Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{OBA}+\widehat{OCA}=90^o\)
=> OBAC nội tiếp
b) Xét tam giác AEB và tam giác ABD
Có: \(\widehat{BAD}\)chung
\(\widehat{ADB}=\widehat{ABE}=\frac{1}{2}sđ\widebat{BE}\)
=> Tam giác AEB đồng dạng tam giác ABD (g.g)
=> \(\frac{AE}{AB}=\frac{AB}{AD}\)=>AB2=AE.AD (đpcm)
c) Kẽ BE cắt AC tại S
CE cắt AB tại P
Ta có:\(\hept{\begin{cases}\widehat{BEP}=\widehat{CES}=\frac{1}{2}sđ\widebat{BC}\\\widehat{AEP}=\widehat{CED}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)(1)
Mặt khác: \(\hept{\begin{cases}\widehat{BDC}=\widehat{BCA}=\frac{1}{2}sđ\widebat{BC}\\\widehat{DBC}=\widehat{BCA}\left(slt\right)\end{cases}}\)
=> \(\widehat{BDC}=\widehat{DBC}\)
=> Tam giác BDC cân tại C
=> CD=BC
=> \(\widebat{CD}=\widebat{BC}\)(2)
Từ (1),(2) => \(\widehat{BEP}=\widehat{AEP}\)
=> Tia đổi của tia EC là tia phân giác của góc BEA
a) Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{BDE}\) là góc nội tiếp chắn cung BE
\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE
Do đó: \(\widehat{BDE}=\widehat{ABE}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)
hay \(\widehat{ADB}=\widehat{ABE}\)
Xét ΔADB và ΔABE có
\(\widehat{ADB}=\widehat{ABE}\)(cmt)
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔABE(g-g)
Suy ra: \(\dfrac{AD}{AB}=\dfrac{AB}{AE}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=AE\cdot AD\)(đpcm)
Ta có hình vẽ sau:
a)Vì các tiếp tuyến AB, AC của (O) có B,C ∈ (O) nên \(\widehat{ABO}=\widehat{OCA}=90^o\)
Xét tứ giác OBAC có: \(\widehat{ABO}+\widehat{OCA}=90^o+90^o=180^o\)
\(\widehat{ABO}\) và \(\widehat{OCA}\) đối nhau
➤ Tứ giác OBAC nội tiếp đường tròn đường kính OA
b) Vì góc nội tiếp \(\widehat{BDE}\) chắn \(\stackrel\frown{BE}\); \(\widehat{ABE}\) được tạo bởi tiếp tuyến AB và chắn \(\stackrel\frown{BE}\) nên
\(sđ\dfrac{\stackrel\frown{BE}}{2}=sđ\widehat{ABE}=sđ\widehat{BDE}\) trong khi E ∈ AD
▲ABE và ▲ADB có: \(\widehat{ABE}=\widehat{BDA}\)(cmtrên)
\(\widehat{A}\) là góc chung
⇒▲ABE ∼ ▲ADB(g-g) ⇔ \(\dfrac{AB}{AD}=\dfrac{AE}{AB}\Leftrightarrow AB^2=AD\cdot AE\)(điều phải chứng minh)
Vì ▲OAB vuông tại B nên ta có: \(AB^2+OB^2=OA^2\)(Định lý Pytago)
\(\Leftrightarrow AB^2=OA^2-OB^2=\left(3R\right)^2-R^2\) vì B∈(O)
\(=9R^2-R^2\\=8R^2 \)
Trong khi, \(AB^2=AD\cdot AE\)(cmtrên). ➤\(AD\cdot AE=8R^2\left(=AB^2\right)\)
( Bạn tự vẽ hình né . )_
Gọi M là trung điểm của OA
Xét tam giác OBA vuông tại B có BM là đường trung tuyến ứng với cạnh huyền OA
=> OM = MA = MB
Cntt trong tam giác COA : ta được : OM = MC= MA
từ đó suy ra : MA = MB = MC = MO
Suy ra. 4 điểm cùng thuộc đtron tâm M