K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

a) Dễ thấy tg AOB ~ tg COI => OA/OC = OB/OI => OA.OI = OB.OC = R^2 (1)

b)
Trong (O) : ^CED = ^CBD ( cùng chắn cung CD) hay ^CEK = ^CAB (2)
Trong (ABC) : ^CIA = ^CAB (cùng chắn cung CA) hay ^CIK = ^CAB (3)
Từ (2) và (3) => ^CEK = ^CIK => CEIK nội tiếp
Vì CEKI nội tiếp => AK.AI = AC.AE (4)
Mà trong (O) có cát tuyến ACE nên có hệ thức : AC.AE = OA^2 - R^2 = 4R^2 - R^2 = 3R^2 (5)
Mặt khác từ (1) => OI = R^2/OA = R^2/2R = R/2 => AI = OA + OI = 2R + R/2 = 5R/2 (6)
Từ (4) ; (5); (6) => AK = AC.AE/AI = 3R^2/(5R/2) = 6R/5

c) OA cắt (O) tại M, N (M nằm giữa A và K) =>
MK = AK - AM = 6R/5 - R = R/5
NK = AN - AK = 3R - 6R/5 = 9R/5
Vì EMDN nội tiếp (O) nên tương tự câu a) ta có : DK.EK = MK.NK = 9R^2/25 (7)
Mặt khác nếu trên đoạn OK lấy J sao cho JK = 3R/10 => J cố định và AK.JK = (6R/5).(3R/10) = 9R^2/25 (8)
Từ (7) và (8) => AK.JK = DK.EK => ADJE nội tiếp hay đường tròn ngoại tiếp tg ADE luôn đi qua AJ hay tâm của có luôn chạy trên đường thẳng trung trực của đoạn AJ cố định xác định như trên

3 tháng 11 2018

a, Chú ý:  A M O ^ = A I O ^ = A N O ^ = 90 0

b,  A M B ^ = M C B ^ = 1 2 s đ M B ⏜

=> DAMB ~ DACM (g.g)

=> Đpcm

c, AMIN nội tiếp => A M N ^ = A I N ^

BE//AM => A M N ^ = B E N ^

=>   B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp =>  B I E ^ = B N M ^

Chứng minh được:  B I E ^ = B C M ^ => IE//CM

d, G là trọng tâm DMBC Þ G Î MI

Gọi K là trung điểm AO Þ MK = IK = 1 2 AO

Từ G kẻ GG'//IK (G' Î MK)

=>  G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O  không đổi   (1)

MG' =  2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)

20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).