K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

A B C D M O

a. ta có OM vuông góc CD (OA vuông góc CD:gt)

M là trung điểm CD (bán kính vuông góc dây cung tại trung điểm dây cung)

M là trung điểm OA

=> tứ giác ACOD có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành

mà OC = OD (bán kính)

=> hình bình hành ACOD có hai cạnh kề bằng nhau là hình thoi

b. ta có: BM = OB + OM = OB + 1/2OA = OB +1/2OB = 3/2OB

 OB = 2/3 OM

mà BM là trung tuyến của tam giác BCD

=> O là trọng tâm tam giác BCD

mà O cũng là tâm đường tròn ngoại tiếp tam giác BCD

=> tam giác BCD có trọng tâm cũng là tâm đường tròn ngoại tiếp tam giác là tam giác đều

5 tháng 11 2016

mọi người giúp tớ bài này vs

1: Xét \(\left(O\right)\) có 

OA là một phần đường kính

CD là dây

OA\(\perp\)CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác OCAD có

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo OA

Do đó: OCAD là hình bình hành

mà OC=OD

nên OCAD là hình thoi

2: Ta có: OCAD là hình thoi

nên OC=OD=AC=AD

mà OA=OC

nên OC=OD=AC=AD=OA

Xét ΔOAC có OA=OC=AC

nên ΔOAC đều

8 tháng 11 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Bán kính OA vuông góc với BC nên MB = MC.

Lại có MO = MA (gt).

Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.

Lại có: OA ⊥ BC nên OBAC là hình thoi.