Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : AB = AC (tính chất tiếp tuyến)
\(\Rightarrow\) tam giác ABC cân tại A
có OA là tia phân giác của góc A
\(\Rightarrow\) OA \(\perp\) BC \(\Rightarrow\) tam giác ABO vuông tại B có đường cao BH
ta có : OB2 = OA.OH \(\Leftrightarrow\) 32 = 5OH
\(\Rightarrow\) OH = \(\dfrac{9}{5}\) = 1,8 (cm)
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA\(\perp\)BC tại H
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOBA vuông tại B có BH là đường cao ứng với cạnh huyền AO, ta được:
\(OH\cdot OA=OB^2\)
\(\Leftrightarrow OH\cdot5=3^2=9\)
hay OH=1,8(cm)
nhờ mọi người giúp em với , mai em thi mà em không biết làm bài nik ak. xin chân thành cảm ơn trước ak.
Theo tính chất của hai tiếp tuyến cắt nhau ta có :
DB = DM
EM = EC
Chu vi của tam giác ADE bằng :
AD + DE + EA = AD + DM + ME + EA
= AD + DB + AE + EC = AB + AC = 2AB
Mà tứ giác ABOC là hình vuông (chứng minh trên) nên:
AB = OB = 2 (cm)
Vậy chu vi của tam giác ADE bằng: 2.2 = 4 (cm)
Áp dụng đlí Py - ta - go cho tam giác BAO vuông tại B , ta có :
\(OA^2=OB^2+AB^2\)
\(AB^2=OA^2-OB^2=5^2-3^2=16\)
\(AB^2=16\Rightarrow AB=4cm\)
=> AC = 4cm
Theo tính chất 2tt cắt nhau , ta có :
DB = DM ; EC = EM
=> AD + DE + AE = AB + AC = 4 + 4 = 8
Vậy : chu vi tam giác ADE là : 8cm
Vì cậu làm câu a) rồi nên mình chỉ làm 2 câu còn lại thôi nhá (:
a. Ta có: AB = AC (tính chất hai tiếp tuyến cắt nhau). Suy ra \(\Delta ABC\)cân tại A.
AO là tia phân giác của góc BAC (tính chất hai tiếp tuyến cắt nhau)
Suy ra AO là đường cao của tam giác ABC (tính chất tam giác cân)
Ta có: AO vuông góc với BC tại H
Lại có: \(AB\perp OB\)( tính chất tiếp tuyến )
Tam giác ABO vuông tại B có \(BH\perp AO\)
Theo hệ thức lượng trong tam giác vuông, ta có:
\(OB^2=OH.OA\Rightarrow OH=\frac{OB^2}{OA}=\frac{32}{5}=1,8\left(cm\right)\)
b. Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:
AO2 = AB2 + BO2
Suy ra: AB2 = AO2 – BO2 = 52 – 32 = 16
AB = 4 (cm)
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
DB = DM
EM = EC
Chu vi của tam giác ADE bằng:
AD + DE + EA = AD + DB + AE + EC
= AB + AC = 2AB = 2 . 4 = 8 ( cm )
Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:
A O 2 = A B 2 + B O 2
Suy ra: A B 2 = A O 2 - B O 2 = 5 2 - 3 2 = 16
AB = 4 (cm)
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
DB = DM
EM = EC
Chu vi của tam giác ADE bằng:
AD + DE + EA = AD + DB + AE + EC
= AB + AC = 2AB = 2.4 = 8 (cm)