K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

Đường tròn (C): x 2 + y 2 − 6 x + 8 y − 24 = 0  có tâm I(3; - 4) và bán kính R = 7.

Khoảng cách d I ,   ∆ = 4.3 + 3. − 4 − m 5 = m 5 .

Để đường thẳng cắt đường tròn theo dây cung có độ dài bằng 10 ta có:

10    = 2     R 2 −    d ( I ;    Δ ) 2 ⇔ 5 =    49 −     m 2 25 ⇔ 25 = 49 −    m 2 25     ⇔ m 2 25    = 24 ⇔ m 2 =  ​ 600 ⇔ m =    ± 10 6

ĐÁP ÁN B

3 tháng 8 2017

Xét hệ phương trình m − 2 x + m − 6 y = − m + 1 m − 4 x + 2 m − 3 y = m − 5  có định thức cấp hai là

D = m − 2 m − 6 m − 4 2 m − 3 =     m − 2 . 2 m − 3 − m − 4 .   m − 6

= m 2 + 3 m − 18 = m − 3 m + 6

Để hai đường thẳng cắt nhau thì hệ phương trình có nghiệm duy nhất

D ≠ 0 m ≠ 3 m ≠ − 6

ĐÁP ÁN C

1: x^2+y^2+6x-2y=0

=>x^2+6x+9+y^2-2y+1=10

=>(x+3)^2+(y-1)^2=10

=>R=căn 10; I(-3;1)

Vì (d1)//(d) nên (d1): x-3y+c=0

Theo đề, ta có: d(I;(d1))=căn 10

=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)

=>|c-6|=10

=>c=16 hoặc c=-4

20 tháng 4 2021

- Xét đường tròn \(\left(C\right)\) có tâm \(I\left(1;0\right)\) và \(R=\dfrac{\sqrt{5}}{5}\)

- Để đường thẳng d và đường tròn không có điểm chung 

\(\Leftrightarrow d_{\left(d/I\right)}=\dfrac{\left|m-2m+3\right|}{\sqrt{m^2+1}}>R=\dfrac{\sqrt{5}}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9}{m^2+1}>\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{m^2-6m+9-0,2m^2-0,2}{m^2+1}>0\)

\(\Leftrightarrow0,8m^2-6m+8,8>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< \dfrac{11}{2}\end{matrix}\right.\)

Vậy ...

 

9 tháng 8 2021

có 5 câu 

nha mấy bạn ,giúp mik 

 

9 tháng 6 2017

Đường tròn đã cho có tâm  I( - 4; -3).

Để đường thẳng ∆ cắt đường tròn theo dây cung dài nhất thì điểm I nằm trên ∆.

Suy ra:  3. (-4) – 4. (-3) + m = 0

⇔ − 12 + ​ 12 + ​ m = 0    ⇔ m = 0

Đáp án A

NV
14 tháng 4 2022

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)