K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2022

- Hình vẽ:

undefined

a) -Xét △ACH và △DCB có:

\(AC=DC\) (ACDE là hình vuông).

\(HC=CB\) (BCHF là hình vuông).

\(\widehat{ACH}=\widehat{DCB}=90^0\).

=>△ACH=△DCB (c-g-c).

=>\(AH=BD\) (2 cạnh tương ứng).

*BD cắt AH tại O.

- Ta có: \(\widehat{AHC}=\widehat{DBC}\) (△ACH=△DCB).

Mà \(\widehat{DBC}+\widehat{BDC}=90^0\) (△DCB vuông tại C).

=>\(\widehat{AHC}+\widehat{BDC}=90^0\).

Mà \(\widehat{BDC}=\widehat{ODH}\) (đối đỉnh).

=>\(\widehat{AHC}+\widehat{ODH}=90^0\).

Mà \(\widehat{AHC}+\widehat{ODH}+\widehat{HOD}=180^0\) (tổng 3 góc trong △HOD).

=>\(90^0+\widehat{HOD}=180^0\).

=>\(\widehat{HOD}=90^0\) nên \(AH\perp BD\) tại O.

b) - Xét △ADH có:

I là trung điểm AD (I là tâm đối xứng của hình vuông ACDE).

N là trung điểm DH (gt).

=>IN là đường trung bình của △ADH.

=>IN=\(\dfrac{1}{2}AH\) (1) ; IN//AH

- Xét △ADB có:

I là trung điểm AD (I là tâm đối xứng của hình vuông ACDE).

M là trung điểm AB (gt).

=>IM là đường trung bình của △ADB.

=>IM=\(\dfrac{1}{2}BD\)=\(\dfrac{1}{2}AH\). (2); IM//BD.

- Từ (1) và (2) suy ra: \(IM=IN\)

- Ta có: \(AH\perp BD\) (cmt) ; IN//AH (cmt) ; IM//BD(cmt).

=>\(IN\perp IN\) tại I.

- Xét △DHB có:

K là trung điểm BH (K là tâm đối xứng của hình vuông BCHF).

N là trung điểm DH (gt).

=>KN là đường trung bình của △DHB.

=>KN=\(\dfrac{1}{2}BD\) (3) ; NK//BD.

- Từ (3) và (4) suy ra: KN=IM mà KN//IM//BD.

=>NKMI là hình bình hành mà IM=IN (cmt)

=>NKMI là hình thoi mà \(\widehat{NIM}=90^0\) (\(IM\perp IN\) tại I).

=>NKMI là hình vuông.

 

 

22 tháng 10 2016

cần gấp ae ơi

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD