Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC có = 1000 , = 400
Cạnh lớn nhất của tam giác ABC là BC vì BC đối diện với góc A và góc = 1000 > 900 nên góc A là góc tù
b) Tam giác ABC là tam giác tù
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)
Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)
Hay A1 + 80 + B = 180 => A1 + B = 100 (1)
Do góc ADB + ADC = 180 (Kề bù)
=> 80+ ADC = 180
ADC = 100
Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)
A2 + 100 + C = 180
A2 + C = 80 (2)
Từ 1, 2, có: A2 + C + 20 = A1 + B = 100
=> A1 + C + 20 = A1 + 3/2C
3/2C - C = 20
=> 1/2C= 20
C= 40
Mà B = 3/2 C => B = 3/2 . 40 = 60
Xét tam giác ABC có: A+B+C = 180
hay A + 60+40=180
A= 80
Vậy ...........
2/
Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100
Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C
Xét tam giác IBC có:
B2+BIC+C2 = 180
(B2+C2) + BIC = 180
1/2 B + 1/2 C + BIC = 180
1/2 ( B+C) +BIC = 180
hay 1/2 . 100 + BIC = 180
BIC = 180 - 50
BIC = 130
Vậy ...
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù