K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có

AH,BK là trung tuyến

AH cắt BK tại G

=>G là trọng tâm

=>I là trung điểm của AB

=>IA=IB

c: GH=18/3=6cm

HC=16/2=8cm

=>GC=10cm

=>GI=5cm

19 tháng 5 2022

Tham khảo

a.Xét ΔAHB,ΔAHC có:

Chung AHAH

ˆAHB=ˆAHC(=90o)

AB=AC

→ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

→HB=HC

→H là trung điểm BC

Mà K là trung điểm AC 

Do AH∩BK=G

→G là trọng tâm ΔABC

19 tháng 5 2022

a.Xét ΔAHB,ΔAHCΔAHB,ΔAHC có:

Chung AHAH

ˆAHB=ˆAHC(=90o)AHB^=AHC^(=90o)

AB=ACAB=AC

→ΔAHB=ΔAHC→ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

→HB=HC→HB=HC

→H→H là trung điểm BCBC

Mà KK là trung điểm ACAC 

Do AH∩BK=GAH∩BK=G

→G→G là trọng tâm ΔABC

29 tháng 5 2022

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

29 tháng 5 2022

refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

19 tháng 5 2022

Tham khảo

 

b) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

19 tháng 5 2022

mik tham khảo link này nha: https://lazi.vn/edu/exercise/cho-tam-giac-abc-can-tai-a-duong-cao-ah-va-trung-tuyen-bk-cat-nhau-tai-g-tia-cg-cat-ab-tai-i

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

a: Xét ΔABH vuông tai H và ΔACH vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

b: Xét ΔABC co

AH,CN là trung tuyến

AH cắt CN tại G

=>G là trọng tâm

c: Xét ΔABC có

H là trung điểm của CB

HE//AB

=>E là trung điểm của AC

=>B,G,E thẳng hàng

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH. a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90 Chứng minh HK // AB và KB = AH. Chứng minh ΔMAC cân. Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA. Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H. Chứng minh rằng ΔAHB = ΔAHC. Gọi I là trung điểm của cạnh...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB.
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

7
9 tháng 8 2019
https://i.imgur.com/asHE6YF.jpg
9 tháng 8 2019
https://i.imgur.com/YjO2Xz0.jpg