K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 3 2022

\(u_{n+1}=\dfrac{u_n}{u_n+1}\Rightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}+1\)

Đặt \(\dfrac{1}{u_n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{u_1}=1\\v_{n+1}=v_n+1\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSC với công sai \(d=1\Rightarrow v_n=v_1+\left(n-1\right).1=n\)

\(\Rightarrow u_n=\dfrac{1}{n}\)

\(\Rightarrow u_n+1=\dfrac{n+1}{n}\)

\(\lim\dfrac{2014\left(\dfrac{2}{1}\right)\left(\dfrac{3}{2}\right)\left(\dfrac{4}{3}\right)...\left(\dfrac{n+1}{n}\right)}{2015n}=\lim\dfrac{2014\left(n+1\right)}{2015n}=\dfrac{2014}{2015}\)

5 tháng 3 2022

https://hoc24.vn/cau-hoi/giai-phuong-trinhleft3-4sin2xrightleft3-4sin23xright1-2cos10x.4916575957961

Giúp mik bài này với ạ

19 tháng 2 2021

Bạn tham khảo câu trả lời của anh Lâm

https://hoc24.vn/cau-hoi/.334447965337

NV
28 tháng 3 2021

Dễ dàng nhận thấy \(u_n\) là dãy dương

Ta sẽ chứng minh \(u_n< 2\) ; \(\forall n\)

Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (thỏa mãn)

Giả sử điều đó đúng với \(n=k\) hay \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Thật vậy, \(u_{k+1}=\sqrt{u_k+2}< \sqrt{2+2}=2\) (đpcm)

Do đó dãy bị chặn trên bởi 2

Lại có: \(u_{n+1}-u_u=\sqrt{u_n+2}-u_n=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{\left(u_n+1\right)\left(2-u_n\right)}{\sqrt{u_n+2}+u_n}>0\) (do \(u_n< 2\))

\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn. Gọi giới hạn đó là k>0

Lấy giới hạn 2 vế giả thiết:

\(\lim\left(u_{n+1}\right)=\lim\left(\sqrt{u_n+2}\right)\Leftrightarrow k=\sqrt{k+2}\)

\(\Leftrightarrow k^2-k-2=0\Rightarrow k=2\)

Vậy \(\lim\left(u_n\right)=2\)

18 tháng 2 2021

\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)

\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)

\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)

....

\(\Rightarrow u_n=5\sqrt{n}-3\)

\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)