K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021
524288 Dãy số có dạng 2^x với x là số nguyên tố
2 tháng 10 2021

quy luật 8,32 =8 x4 ( đằng trước )

 ==> chữ số tiếp theo là 131072 x 8192=1.073.741.824

16 tháng 7 2019

Cách 1. Ta có: Khi cộng vào mỗi số liệu của một dãy số liệu thống kê cùng một hằng số thì phương sai và độ lệch chuẩn không thay đổi. Do đó độ lệch chuẩn của dãy (2) vẫn là 2 kg.

Cách 2. Tính trực tiếp độ lệch chuẩn của dãy (2).

Đáp án: A.

16 tháng 5 2017

Đáp án D.

+ Trung bình cộng của dãy là  x ¯ = 7

+ Phương sai của dãy số liệu thống kê là:

  S 2 = 1 5 - 7 2 + 1 . 6 - 7 2 + 1 . 7 - 7 2 + 1 . 8 - 7 2 + 1 . 5 5 S 2 = 10 5 = 2

27 tháng 6 2023

 

    1. 1.Ta sẽ chứng minh bằng phương pháp quy nạp.
    2.  

    Gọi a_n là số thứ n trong dãy số đã cho. Ta sẽ chứng minh rằng không có 6 số liên tiếp trong dãy số đã cho có giá trị là 0, tức là a_i  0 với mọi i sao cho 1  i  6.

    • Với i = 1, 2, 3, 4, 5, ta thấy rằng a_i  0.
    • Giả sử với mọi i sao cho 1  i  k (với k  5), đều có a_i  0. Ta sẽ chứng minh rằng a_(k+1)  0.

    Nếu a_k  0, a_(k+1)  0 do a_(k+1) = chữ số tận cùng của tổng 6 số đứng ngay trước nó, và các số này đều khác 0.

    Nếu a_k = 0, ta xét 5 số đứng trước nó: a_(k-4), a_(k-3), a_(k-2), a_(k-1), a_k. Vì a_k = 0, nên tổng của 6 số này chính là tổng của 5 số đầu tiên, và theo giả thiết quy nạp, không có 5 số liên tiếp trong dãy số đã cho có giá trị là 0. Do đó, a_(k+1)  0.

    Vậy, theo nguyên tắc quy nạp, ta có dãy số đã cho không chứa 6 số liên tiếp bằng 0.

    1. 2. Khi a, b, c là các số nguyên, ta có thể chứng minh bằng phương pháp quy nạp rằng sau hữu hạn bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0.
    • Với a, b, c bất kỳ, ta có ab, bc, ca  0. Nếu một trong ba số này bằng 0, ta đã tìm được số bằng 0.
    • Giả sử sau k bước biến đổi, trong bộ 3 thu được có ít nhất 1 số bằng 0. Ta sẽ chứng minh rằng sau k+1 bước biến đổi, trong bộ 3 thu được cũng có ít nhất 1 số bằng 0.

    Giả sử trong bộ 3 thu được sau k bước biến đổi, có a = 0. Khi đó, ta chỉ cần chứng minh rằng trong 2 số còn lại, có ít nhất 1 số bằng 0.

    Nếu b = 0 hoặc c = 0, ta đã tìm được số bằng 0.

    Nếu b và c đều khác 0, ta có:

    bc, ca, ab  1

    Do đó, trong 3 số bc, ca, ab, không có số nào bằng 0. Khi đó, ta có:

    b(bc)ca=ab

    Vậy, ta có thể thay bằng b - (b - c) để giảm số lượng biến đổi. Sau đó, ta lại áp dụng phương pháp quy nạp để chứng minh rằng trong bộ 3 thu được sau k+1 bước biến đổi, có

    10:06

Số cách xếp 24 học sinh là 24!

Khi cho 4 bạn có tên trong đề ngồi cạnh nhau thì có 4! cách xếp

Có 4 hàng dọc, mà mỗi hàng dọc thì có 3 th là 1-2-3-4; 2-3-4-5; 3-4-5-6

=>Có 3*4*4!*20!

=>P=2/1771

26 tháng 12 2019

Chọn A.

Dãy số liệu thứ 2 có 2 số liệu khác với dãy số liệu 1 là số đứng ở vị trí đầu tiên và số đứng ở vị trí cuối cùng. Tuy nhiên tổng của số đứng đầu tiên + số đứng ở vị trí cuối cùng không thay đổi. Do đó; số trung bình không thay đổi.

8 tháng 5 2016

Từ 1 đến 9 có: [(9-1)+1]*1=9 (chữ số)

Số chữ số còn lại là: 1989-9=1980 (chữ số)

Từ 10 đến 99 có: [(99-10)+1]*2=180 (chữ số)

Số chữ số còn lại là: 1980-180=1800 (chữ số)

Từ 100 đến x, ta có: [(x-100)+1]*3=1800 (chữ số)

                                (x-100)+1=1800:3=600

                                 x-100=600-1=599

                                 x=599+100=699

Vậy x=699

8 tháng 5 2016

Vì riêng các số có 3 chữ số đã có 2700 chữ số nên số hạng x không quá 3 chữ số.

có 9 số có 1 chữ số và 90 số có 2 c/s.

Ta có

Số chữ số của các số có 3 c/s là :

1989 - (9 x 1 + 90 x 20) = 1800 (chữ số)

số số hạng có 3 c/s là :

1800 : 3 = 600 (số hạng)

Vậy số x là:

600 + 90 + 9 = 699 

17 tháng 6 2017

Chọn B.

Số trung bình của dãy số liệu thống kê đã cho là:

Đề kiểm tra 15 phút Đại số 10 Chương 5 có đáp án (Đề 1)

10 tháng 10 2016

Gọi B là tổng các chữ số của A. Ta có A = 123456...9899100

Lúc này ta cần tính B = 1 + 2 + ... + 8 + 9 + 1 +0 +1 + 1 + ... + 9 + 9 + 1 + 0 + 0

Ta sẽ tính sác xuất xuất hiện ( tức tần số suất hiện ) của các chữ số 0 ; 1 ; 2 ; ... ; 8 ; 9

Ta sẽ thấy 0 xuất hiện 11 lần ; 1 xuất hiện 21 lần còn các chữ số còn lại là 2 ; 3 ;... ;9 thì xuất hiện 20 lần

Vậy B = 0 x 1 + 1 x 21 + ( 2 + 3 + ... + 9 ) x 20 = 901 ko chia hết cho 9 nên ko thể chia hết cho 2007