Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Quy luật :
Ta có : \(\frac{1}{8}\)= \(\frac{1}{2\cdot4}\)
\(\frac{1}{24}\)= \(\frac{1}{4\cdot6}\)
\(\frac{1}{48}\)= \(\frac{1}{6\cdot8}\)
\(\frac{1}{80}\)= \(\frac{1}{8\cdot10}\)
Do đó 2 số tiếp theo sẽ có mẫu lần lượt là 120 ( 10 . 12 ) và 168 ( 12 . 14 )
2 số tiếp theo là : \(\frac{1}{120}\)và \(\frac{1}{168}\)
b) Tổng 6 số hạng đầu của dãy số là :
\(\frac{1}{8}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{80}\)+ \(\frac{1}{120}\)+ \(\frac{1}{168}\)
= \(\frac{1}{2\cdot4}\)+ \(\frac{1}{4\cdot6}\)+ \(\frac{1}{6\cdot8}\)+ \(\frac{1}{8\cdot10}\)+ \(\frac{1}{10\cdot12}\)+ \(\frac{1}{12\cdot14}\)
= \(\frac{1}{2}\). ( \(\frac{2}{2\cdot4}\)+ \(\frac{2}{4\cdot6}\)+ \(\frac{2}{6\cdot8}\)+ \(\frac{2}{8\cdot10}\)+ \(\frac{2}{10\cdot12}\)+ \(\frac{2}{12\cdot14}\))
= 1/2 x ( 1 - 1/4 + 1/4 - 1/6 + 1/6- 1/8 + 1/8 - 1/10 + 1/10 - 1/12 + 1/12 - 1/14 )
= 1/2 x ( 1 - 1/14 )
= 1/2 x 13/14
= 13/28
Ta có: \(\frac{1}{8}=\frac{1}{2\cdot4}\)
\(\frac{1}{24}=\frac{1}{4\cdot6}\)
\(\frac{1}{48}=\frac{1}{6.8}\)
\(\Rightarrow\)Số hạng thứ 30 là:\(\frac{1}{60\cdot62}=\frac{1}{3720}\)
a) Xét thấy dãy số theo quy luật:
Số hạng thứ I: 3 = 3 + 15 x 0
Số hạng thứ II: 18 = 3 + 15 x 1
Số hạng thứ III: 48 = 3 + 15 x 1 + 15 x 2 = 3 + 15 x (1 + 2)
Số hạng thứ IV: 93 = 3 + 15 x 1 + 15 x 2 + 15 x 3 = 3 + 15 x (1 + 2 + 3)
........
Số hạng thứ 100: 3 + 15 x 1 + 15 x 2 + 15 x 3 +...+ 15 x 99 = 3 + 15 x (1 + 2 + 3 +...+ 99)
= 3 + 15 x (99 + 1) x 99 : 2 = 74253
b) 11703 = 3 + 15 x (1 + 2 +...+ n)
=> 15 x (1 + 2 +...+ n) = 11700
=> 1 + 2 +...+ n = 780
=> n x (n + 1) = 780 x 2
=> n x (n + 1) = 39 x 40
=> n = 39
Số 11703 là số thứ 40 của dãy
Dãy số: 0,1,2,4,7,12
2=(0+1)+1
4=(1+2)+1
7=(2+4)+1
12=(4+7)+1
Vậy quy luật của dãy số là:Kể từ số thứ 2 thì bằng tổng của 2 số trước cộng 1
Quy luật của dãy số trên là: lấy tổng 2 số phía trước cộng với 1.
Ta có: 0,1,2,4,7,12,,20,33
Chắc vậy đó! Chúc một ngày tốt lành!
1/8,1/24,1/48,1/80
1/8=1/2x4
1/24=1/4x6
1/48=1/6x8
1/80=1/8x10
Tới đây chắc hiểu rồi chứ