K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Vậy: BC=35cm

Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)

hay AH=16,8(cm)

Vậy: BC=35cm; AH=16,8cm

a) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))

\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)

\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

1 tháng 3 2020

A B C D N M

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có BD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tc)

\(\Rightarrow\frac{AD}{DC}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)( tc của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)

b) Xét tứ giác BMDN có \(\hept{\begin{cases}MD//BN\left(MD//BC,N\in BC\right)\\ND//MB\left(ND//AB,M\in AB\right)\end{cases}}\)\(\Rightarrow BMND\)là hình bình hành ( dhnb) (3) 

Xét tam giác ABC có: \(MD//BC\left(gt\right)\)

\(\Rightarrow\frac{AD}{AC}=\frac{MD}{BC}\)( hệ quả của định lý Ta-let) 

\(\Rightarrow\frac{3}{8}=\frac{MD}{10}\)

\(\Rightarrow MD=3,75\left(cm\right)\left(1\right)\)

Xét tam giác ABC có \(ND//AB\left(gt\right)\) 

\(\Rightarrow\frac{DC}{AC}=\frac{ND}{AB}\)( hệ quả của định lý ta-let) 

\(\Rightarrow\frac{5}{8}=\frac{ND}{6}\)

\(\Rightarrow ND=3,75\left(cm\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow ND=MD\) (4)

Từ (3) và (4) \(\Rightarrow BMDN\)là hình thoi (dhnb)

c) \(S_{BMDN}=4.3,75=15\left(cm\right)\)

a: \(BC=\sqrt{20^2+21^2}=29\left(cm\right)\)

b: AD là phân giác

=>BD/AB=CD/AC
=>BD/20=CD/21=29/41

=>BD=580/41cm; CD=609/41cm

c: Xet tứ giác AEDF có

AE//DF

DE//FA

góc FAE=90 độ

AD là phan giác của góc FAE

=>AEDF là hình vuông

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0

a: Xét tứ giác AEDF có 

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là phân giác

nên AEDF là hình thoi

mà \(\widehat{EAF}=90^0\)

nên AEDF là hình vuông

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{5}{7}\)

Do đó: DB=15/7(cm); DC=20/7(cm)

9 tháng 4 2022

Vẽ hình(tự vẽ nha)

a) Ta có: \(BC^2\)=\(5^2=25\)

\(AB^2+AC^2=3^2+4^2=9+16=25\)

\(AB^2+AC^2=BC^2\)

⇒Δ ABC vuông tại A (theo định lí Py-ta -go đảo)

⇒BA⊥AC

Mà DE//AC(gt);DF//AB(gt)

⇒DE⊥BA;DF⊥AC(t/c)

Xét tứ giác AEDF có   \(\widehat{AFD}=90^o\left(DF\perp AC\right)\)\(\widehat{BAC}=90^o\left(BA\perp AC\right);\widehat{AED}=90^{o^{ }}\left(DE\perp BA\right)\);AD là p/g \(\widehat{BAC}\)

⇒Tứ giác AEDF là hình vuông (d/h)

b) Xét ΔABC có AD là tia phân giác \(\widehat{BAC}\),theo t/c ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)\(\dfrac{DC}{AC}=\dfrac{BD}{AB}\)hay\(\dfrac{DC}{4}=\dfrac{BD}{3}\) 

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{DC}{4}=\dfrac{BD}{3}\)=\(\dfrac{DC+BD}{4+3}=\dfrac{BC}{7}=\dfrac{5}{7}\)

\(\left\{{}\begin{matrix}DC=4.\dfrac{5}{7}=\dfrac{20}{7}\left(cm\right)\\BD=BC-DC=5-\dfrac{20}{7}=\dfrac{15}{7}\left(cm\right)\end{matrix}\right.\)

Bạn xem lại có phải chép sai đề không?,ở chỗ "tứ giác aebf là hình gì" và chỗ "af/ab+af/ab=1",và câu d có gì đó thiếu thiếu.Mk đã sửa lại câu a,vì như vậy mới ra tứ giác.

 

 

 

 

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

b:

Sửa đề: AN=2cm

MN//BC

=>MN/BC=AN/AC

=>MN/10=2/8=1/4

=>MN=2,5cm

c AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm; DC=40/7cm