Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔBAE có
\(\widehat{ABC}=\widehat{BAE}\)
AB chung
\(\widehat{BAC}=\widehat{ABE}\)
Do đó: ΔABC=ΔBAE
b: Xét tứ giác AEBC có
AE//BC
BE//AC
DO đó: AEBC là hình bình hành
SUy ra: AE=BC và BE=AC
Xét tứ giác ABDC có
AB//DC
BD//AC
DO đó: ABDC là hình bình hành
Suy ra: AB=DC và AC=BD
Xét tứ giác ABCF có
AB//CF
AF//BC
Do đó: ABCFlà hình bình hành
Suy ra: AB=CF và AF=CB
=>EF=2BC; ED=2AC; DF=2AB
\(\Leftrightarrow C_{DEF}=2\cdot15=30\left(cm\right)\)
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
Giải thích các bước giải:
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b)
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b) ta có
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
vậy chu vi của tam giác DEF = 60 ( bn ko cho đơn vị nên mk ko viết đơn vị nha )
hình ko đẹp ko chính xác lắm nên chỉ mang tính chất minh họa
a) xét 2 tam giác ABC và ABE ta có
AB chung
A1=B2 ( EF song song BC)
A2=B1 ( AC song song EB )
=> tam giác ABC = tam giác ABE (g-c-g)
b) ta có
+) xét 2 tam giác ABC và ACF => C2=A3;C1=A2; AC chung => tam giác ABC= tam giác CFA (g-c-g)
+) xét 2 tam giác ABC và ACF => C3=B2;B3=C2;BC chung => tam giác ABC = tam giác CDB ( g-c-g)
=> chu vi của 3 tam giác : BAE , CFA , CDB = chu vi của tam giác ABC = 15
=> chu vi tam giác DEF = 15 . 4 = 60
a, vì BD song song với AC nên góc B2 bằng góc C2. tương tự được góc C1 bằng góc B1.Do đó tam giác ABC = tam giác BAE(g.c.g) (dpcm)
b, vì AC song song với BD nên góc D bằng góc ACF.
vì AF song song với BC nên góc C1= góc CAF = B2.
theo câu a, tam giác ABC= tam giác DCB nên AC=BD, AB=DC
Do đó tam giác BDC=tam giác ACF(g.c.g) nên DC = CF=AB nên DF= DC+CF=2.AB.
Tương tự ta đc; DE=2.AC, EF=2.BC
Do đó Chu vi tam giác DEF bằng 2 lần chu vi tam giác ABC và bằng 30 cm
Hay quá!!!!!!!!!!