K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: f(x):g(x)

\(=\dfrac{3x-a}{x-1}\)

\(=\dfrac{3x-3-a+3}{x-1}\)

\(=3+\dfrac{-a+3}{x-1}\)

Để f(x):g(x) có số dư là 2 thì 3-a=2

hay a=1

a: Ta có: f(x):g(x)

\(=\dfrac{3x-a}{x-1}\)

\(=\dfrac{3x-3+3-a}{x-1}\)

\(=3+\dfrac{3-a}{x-1}\)

Để f(x):g(x) có số dư là 2 thì 3-a=2

hay a=1

b: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+a}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6+a-6}{x+1}\)

\(=x^2-3x+6+\dfrac{a-6}{x+1}\)

Để f(x):g(x) là phép chia hết thì a-6=0

hay a=6

a: Thay a=3 vào f(x), ta được:

\(f\left(x\right)=x^3-2x^2+3x+3\)

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3-2x^2+3x+3}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-3}{x+1}\)

\(=x^2-3x+6-\dfrac{3}{x+1}\)

 

a: Thay a=2 vào f(x), ta được:

f(x)=3x-2

f(x):g(x)

\(=\dfrac{3x-2}{x-1}\)

\(=\dfrac{3x-3+1}{x-1}\)

\(=3+\dfrac{1}{x-1}\)

26 tháng 8 2021

`f(x):g(x)` dư 2

`=>f(x)-2\vdots g(x)`

`=>x-3x+5x-a-2\vdots x-1`

`=>3x-3+a+1\vdots x-1`

`=>3(x-1)+a+1\vdots x-1`

`=>a+1=0=>a=-1`

a: Ta có: f(x):g(x)

\(=\dfrac{3x-a}{x-1}\)

\(=\dfrac{3x-3+3-a}{x-1}\)

\(=3+\dfrac{3-a}{x-1}\)

Để f(x):g(x) có số dư là 2 thì 3-a=2

hay a=1

d: Ta có: f(x):g(x)

\(=\dfrac{x^3-2x^2+3x+5}{x+1}\)

\(=\dfrac{x^3+x^2-3x^2-3x+6x+6-1}{x+1}\)

\(=x^2-3x+6+\dfrac{-1}{x+1}\)

Để f(x) chia hết cho g(x) thì \(x+1\in\left\{1;-1\right\}\)

hay \(x\in\left\{0;-2\right\}\)

 

25 tháng 10 2020

1. 2x3 + 4x2 + 5x + 3 

= 2x3 + 2x2 + 2x2 + 2x + 3x + 3

= 2x2( x + 1 ) + 2x( x + 1 ) + 3( x + 1 )

= ( x + 1 )( 2x2 + 2x + 3 )

=> ( 2x3 + 4x2 + 5x + 3 ) : ( x + 1 ) = 2x2 + 2x + 3

2.a) 2x3 - 3x2 + x + a chia hết cho x + 2

Ta có đa thức chia có bậc 3, đa thức bị chia có bậc 1

=> Thương bậc 2

Lại có hệ số cao nhất là 2 nên đặt đa thức thương là 2x2 + bx + c

=> 2x3 - 3x2 + x + a chia hết cho x + 2 

⇔ 2x3 - 3x2 + x + a = ( x + 2 )( 2x2 + bx + c )

⇔ 2x3 - 3x2 + x + a = 2x3 + bx2 + cx + 4x2 + 2bx + 2c

⇔ 2x3 - 3x2 + x + a = 2x3 + ( b + 4 )x2 + ( c + 2b )x + 2c

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}b+4=-3\\c+2b=1\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-7\\c=15\\a=30\end{cases}}\)

Vậy a = 30

b) x2 - 3x + 3 chia x - a được thương là x + 3 dư 21

=> x2 - 3x + 3 = ( x - a )( x + 3 ) + 21

⇔ x2 - 3x + 3 - 21 = x2 + 3x - ax - 3a

⇔ x2 - 3x - 18 = x2 + ( 3 - a )x - 3a

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}3-a=-3\\-3a=-18\end{cases}}\Leftrightarrow a=6\)

Vậy a = 6

c) Tí mình gửi link nhé

25 tháng 10 2020

c) https://imgur.com/TzbHKPG

Bạn chịu khó đánh máy tí nhé ;-;