Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phương trình bậc hai trên có 2 nghiệm phân biệt thì ta phải có \(\Delta'>0\)
\(\Leftrightarrow\left[-\left(m+1\right)\right]^2-1.4m>0\)
\(\Leftrightarrow m^2-2m+1>0\)
\(\Leftrightarrow\left(m-1\right)^2>0\)
\(\Leftrightarrow m\ne1\)
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
Lời giải:
a) Ta thấy:
\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt với mọi $m$
b) Áp dụng định lý Viete của pt bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)
Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$
Ta có đpcm.
a)
\(\Delta'=\left(-2\right)^2-\left(4m-m^2\right)=4-4m+m^2=\left(m-2\right)^2\ge0\)
Vì \(\Delta'\ge0\) nên phương trình có nghiệm với mọi m
b) Theo Vi-ét có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=4m-m^2\end{matrix}\right.\)
Lấy phương trình đầu của hệ, kết hợp với đề bài, có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_2=x_1^2-5x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_2=x_1^2-5x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x_1^2-5x_1=4-x_1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\x^2-4x_1+4=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left(x_1-2\right)^2=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_2=4-x_1\\\left[{}\begin{matrix}x_1=2+2\sqrt{2}\\x_1=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=2+2\sqrt{2}\\x_2=2+2\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x_1=2-2\sqrt{2}\\x_2=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
Ta có
\(x_1x_2=4m-m^2\)
Đã tìm được \(x_1\) và \(x_2\) , thay vào để tìm m
\(x^3-ax^2-2x+2a=0\Leftrightarrow x^2\left(x-a\right)-2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x-a\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\\x=a\end{matrix}\right.\)
Để pt có 3 nghiệm pb \(\Leftrightarrow a\ne\pm\sqrt{2}\)
TH1: \(a=\frac{\sqrt{2}-\sqrt{2}}{2}\Rightarrow a=0\)
TH2: \(\sqrt{2}=\frac{a-\sqrt{2}}{2}\Rightarrow a=3\sqrt{2}\)
TH3: \(-\sqrt{2}=\frac{a+\sqrt{2}}{2}\Rightarrow a=-3\sqrt{2}\)
Vậy \(a=\left\{0;\pm3\sqrt{2}\right\}\)