K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )

Ta có : 

\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)

Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)

\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)

28 tháng 3 2017

Bài 1:

Ta có:

\(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(=\dfrac{2}{2!}-\dfrac{1}{2!}+\dfrac{3}{3!}-\dfrac{1}{3!}+...+\dfrac{100}{100!}-\dfrac{1}{100!}\)

\(=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}\)

\(1-\dfrac{1}{100!}< 1\)

Nên \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) (Đpcm)

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay vào biểu thức ta có:

\(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)

\(=\dfrac{a+b}{a}.\dfrac{c+a}{c}.\dfrac{b+c}{b}\)

\(=\dfrac{2a.2b.2c}{abc}\)

\(=\dfrac{8\left(abc\right)}{abc}=8\)

Vậy \(B=8\)

1 tháng 4 2017

bài 3:

Ta có a+2b+ac= -1/2

<=> 1/2+a+2b+ac=0
 

chia 2 vế cho 4 ta được: \(\frac{ }{12}\)(1/2)^3+a(1/2)^3+b(1/2)+c=0

<=> 1/8+a/4+b/2+c=0

<=> P(1/2)=0

Vậy x=1/2 là một nghiệm của đa thức\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

4 tháng 12 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

5 tháng 12 2021

Cảm ơn bn.

4 tháng 2 2021

\(f\left(-1\right)=2\Rightarrow-a+b-c+d=2\\ f\left(0\right)=1\Rightarrow d=1\\ f\left(1\right)=7\Rightarrow a+b+c+d=7\\ f\left(\dfrac{1}{2}\right)=3\Rightarrow\dfrac{1}{8}a+\dfrac{1}{4}b+\dfrac{1}{2}c+d=3\)

\(d=1\Rightarrow-a+b-c=1;a+b+c=6\\ \Rightarrow2b=7\\ \Rightarrow b=\dfrac{7}{2}\\ \Rightarrow\dfrac{1}{8}a+\dfrac{7}{8}+\dfrac{1}{2}c=2\\ \Rightarrow\dfrac{1}{2}\left(\dfrac{1}{4}a+\dfrac{7}{4}+c\right)=2\\ \Rightarrow\dfrac{1}{4}a+\dfrac{7}{4}+c=4\\ \Rightarrow a+7+4c=16\\ \Rightarrow a+4c=9;a+c=6-\dfrac{7}{2}=\dfrac{5}{2}\\ \Rightarrow3c=\dfrac{13}{2}\Rightarrow c=\dfrac{13}{6}\\ \Rightarrow a=\dfrac{5}{2}-\dfrac{13}{6}=\dfrac{1}{3}\)

Vậy \(\left(a;b;c;d\right)=\left(\dfrac{1}{3};\dfrac{7}{2};\dfrac{13}{6};1\right)\)

16 tháng 11 2021

Với \(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\c+a=-b\\a+b=-c\end{matrix}\right.\)

\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{-abc}{abc}=-1\)

Với \(a+b+c\ne0\)

\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}=\dfrac{-2019\left(a+b+c\right)}{a+b+c}=-2019\\ \Leftrightarrow\left\{{}\begin{matrix}a+b-2021c=-2019c\\b+c-2021a=-2019a\\c+a-2021b=-2019b\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

\(B=\dfrac{a+b}{a}\cdot\dfrac{a+c}{c}\cdot\dfrac{b+c}{b}=\dfrac{2a\cdot2b\cdot2c}{abc}=8\)

16 tháng 11 2021

Với a+b+c=0⇔⎧⎪⎨⎪⎩b+c=−ac+a=−ba+b=−ca+b+c=0⇔{b+c=−ac+a=−ba+b=−c

B=a+ba⋅a+cc⋅b+cb=−abcabc=−1B=a+ba⋅a+cc⋅b+cb=−abcabc=−1

Với a+b+c≠0a+b+c≠0

a+b−2021cc=b+c−2021aa=c+a−2021bb=−2019(a+b+c)a+b+c=−2019⇔⎧⎪⎨⎪⎩a+b−2021c=−2019cb+c−2021a=−2019ac+a−2021b=−2019b⇔⎧⎪⎨⎪⎩a+b=2cb+c=2ac+a=2b

26 tháng 2 2018

Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng

Nguyễn Huy Tú Lightning Farron Akai Haruma

12 tháng 11 2021

j giàu thế :) cho xin ít đi

12 tháng 11 2021

\(\dfrac{b+c-5}{a}=\dfrac{a+c+2}{b}=\dfrac{a+b+3}{c}=\dfrac{2a+2b+2c}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}b+c-5=2a\\a+c+2=2b\\a+b+3=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b+c=a+5\\a+b+c=b-2\\a+b+c=c-3\end{matrix}\right.\)

Lại có \(\dfrac{1}{a+b+c}=2\Rightarrow a+b+c=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}a+5=\dfrac{1}{2}\\b-2=\dfrac{1}{2}\\c-3=\dfrac{1}{2}\end{matrix}\right.\)

Từ đó tự giải ra

19 tháng 12 2021

Lưu ý: Ko buff bẩn + ko spam + ko copy + ko nhận những câu trả lời chứa link tới các web khác + phải có lời giải thích đàng hoàng + vv