Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=\left(x^2+y^2\right)\left(2x^2+y^2\right)+y^2\)
\(=2x^2+2y^2=2\)
\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\\ =2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\\ =2x^2.1+y^2+y^2=2\left(x^2+y^2\right)=2.1=2\)
\(a,P=7xy^3-2x^2y^2-5xy^3-3x^2y^2-5\)
\(\Rightarrow P=2xy^3-5x^2y^2-5\)
b, Thay \(x=-2\) vào biểu thức \(P\) ta được :
\(P=2.\left(-2\right).y^2-5.\left(-2\right)^2.y^2-5\)
\(=-4y^2-y^2-5\)
\(=-5y^2-5\)
Vậy tại \(x=-2\) ta được \(P=-5y^2-5\)
Thay \(y=-1\) vào biểu thức \(P\) ta được
\(P=2x.\left(-1\right)^3-5x^2.\left(-1\right)^2-5\)
\(=-2x-4x^2-5\)
\(=-4x^2-2x-5\)
Vậy tại \(y=-1\) ta được \(P=-4x^2-2x-5\)
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
`M = 2x^4 + 3x^2y^2 + y^4 + y^2`
`M = 2x^4 + 2x^2y^2 + x^2y^2 + y^4 + y^2`
`M = 2x^2( x^2 + y^2 ) + ( x^2 + y^2 )y^2 + y^2`
Thay `x^2+y^2=1` vào `M` ta có `:`
`M = 2x^2 . 1 + y^2 . 1 + y^2`
`M = 2x^2 + 2y^2`
`M = 2( x^2 + y^2 )`
`M = 2.1`
`M=2`
Cảm ơn bạn