K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {dnv4510}`

`A)`

`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)

`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`

`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`

`= 3x^4+x^3-x^2+2x+7`

`B)`

`P(x)+M(x)=2Q(x)`

`-> M(x)= 2Q(x) - P(x)`

`2Q(x)=2(x^4+x^3-x^2+2x+1)`

`= 2x^4+2x^3-2x^2+4x+2`

`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`

`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`

`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`

`= 2x^3-2x^2+4x-4`

Vậy, `M(x)=2x^3-2x^2+4x-4`

`C)`

Thay `x=-4`

`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`

`= 2*(-64)-2*16-16-4`

`= -128-32-16-4`

`= -180`

`->` `x=-4` không phải là nghiệm của đa thức.

3 tháng 5 2023

thnk nha mik làm xong r

ha

10 tháng 4 2020

dsssws

20 tháng 4 2021

cho mình hỏi chút có ai chơi free fire nếu có nhắn mình nha thanhk bạn

20 tháng 4 2021

a, Ta có : \(P\left(x\right)+Q\left(x\right)\)ta được : 

\(2x^3-3x^2+x+x^3-x^2+2x+1=3x^3-3x^2+3x+1\)

b, \(P\left(x\right)+M\left(x\right)=2Q\left(x\right)\Rightarrow M\left(x\right)=2Q\left(x\right)-P\left(x\right)\)

\(M\left(x\right)=2x^3-2x^2+4x+2-2x^3+3x^2-x=x^2+3x+2\)

c, Thay x = -2 vào đa thức M(x) ta được : 

\(4-6+2=0\)* đúng * 

Vậy x = -2 là nghiệm của đa thức M(x) 

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

31 tháng 10 2019

Thu gọn Q(x) = x4 + 7x2 + 1

Khi đó R(x) = Q(x) - P(x) = 4x2 + 3x + 2. Chọn A

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

a: A(x)=x^4-x^3-3x^2+2

B(x)=x^4+3x^2+5

b: A(x)+B(x)=2x^4-x^3+7

c: B(x)=x^2(x^2+3)+5>0 

=>B(x) ko có nghiệm

a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2

                   =\(2x^2-2x\)

b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)

                  =x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2

                 =\(2x^3+4x^2+8x-4\)

c) Ta có H(x)=0

\(\Rightarrow\)\(2x^2-2x\)=0

\(\Rightarrow\)2x(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0;1

21 tháng 6 2020

a. 

\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)

\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)

\(=x^4+5x^3-x^2+x+3\)

\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)

\(=-x^4-5x^3+3x^2-x-2\)

b. 

\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)

\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)

\(=2x^2+1\)

c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)

\(\Rightarrow2x^2+1=0\)

     \(2x^2\)      \(=-1\)

         \(x^2\)      \(=\frac{-1}{2}\)  

mà \(x^2\ge0\)

\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm

học tốt

Nhớ kết bạn với mình đó