K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

(x-1) x f(x)=(x+2) x f(x+3)

Thay x=1 : (1-1) x f(1) = (1+2) x f(1+3)

            =>f(4)=0

Thay x=-2 :(-2-1) x f(-2) = (-2+2) x f(-2+3)

           =>f(-2)=0

Thay x=4(thay bang 0 vi f(4)=0).....

Thay x=7 (ket qua o tren)

Thay x=10 kq o tren

 vay 5 nghiem la 1;2;4;7;10

mk chi tom tat thoi nha chuc bn hoc tot

NV
18 tháng 3 2023

\(\left(x^2-25\right)f\left(x+1\right)=\left(x-2\right).f\left(x-1\right)\) (1)

Thay \(x=2\) vào (1) ta được:

\(-21.f\left(3\right)=0.f\left(1\right)=0\Rightarrow f\left(3\right)=0\)

\(\Rightarrow x=3\) là 1 nghiệm của \(f\left(x\right)\)

Thay \(x=5\) vào (1):

\(0.f\left(6\right)=3.f\left(4\right)\Rightarrow f\left(4\right)=0\)

\(\Rightarrow x=4\) là 1 nghiệm

Thay \(x=-5\) vào (1):

\(0.f\left(-4\right)=-7.f\left(-6\right)\Rightarrow f\left(-6\right)=0\)

\(\Rightarrow x=-6\) là 1 nghiệm

Vậy \(f\left(x\right)\) có ít nhất 3 nghiệm là \(x=\left\{3;4;-6\right\}\)

7 tháng 7 2019

Ta có: Với 1=0 thì (1-1).f(1)=(1+2).f(1+3) hay 0=3.f(4) do 3 khác 0 nên f(4)=0 vậy 4 là 1 nghiệm của f(x)

Với x=-2 thì (-2-1).f(-2)=(-2+2).f(-2+3) hay (-3).f(-2)=0 do -3 khác 0 nên f(-2)=0 vậy -2 là 1 nghiệm của f(x)

Với x=4 ta có: (4-1).f(4)=(4+2).f(4+3) suy ra 0=6.f(7) (vì f(4)=0)

do 6 khác 0 nên f(7)=0 hay 7 là 1 nghiệm của f(x)

Với x=7 ta có: (7-1).f(7)=(7+2).f(7+3) suy ra 0=9.f(10) (vì f(7)=0)

do 9 khác 0 nên f(10) bằng 0 hay 10 là 1 nghiệm của f(x)

Với x=10 ta có: (10-1).f(10)=(10+2).f(10+3) suy ra 0=12.f(13) (vì f(10)=0)

do 12 khác 0 nên f(13)=0 hay 13 là 1 nghiệm của f(x)

Vậy 5 nghiệm của f(x) tìm được là: -2;4;7;10;13

7 tháng 7 2019

Không chứng minh tương tự được hả bạn???

Tại sao lại với 1=0?

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

21 tháng 3 2020

1) Thay x=3 vào đẳng thức, thu được:

               \(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)

    \(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)

    \(\Leftrightarrow\) \(f\left(5\right)=0\)  

2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa

  •     Thay x=0 Vào đẳng thức, thu được

               \(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)

     \(\Leftrightarrow\) \(f\left(0\right)=0\)

     \(\Rightarrow\)x=0 là ngiệm của f(x)

  •      Thay x=-3 và đẳng thức, thu được

                \(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)

      \(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)

      \(\Leftrightarrow\)\(f\left(-1\right)=0\)

       \(\Rightarrow\)x=-1 là nghiệm của f(x)

      Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1     

Nguyễn Huy Tú, ngonhuminh, Akai Haruma, Hoàng Thị Ngọc Anh, Hoang Hung Quan, Nguyễn Huy Thắng, Đức Minh, soyeon_Tiểubàng giải, Trung Cao, Nguyen Bao Linh và các bạn trên hoc24 giúp mk với, cần gấp lắm, cảm ơn!!!!!!!

help !!!!!!!!!!!!!!!!!!!!!!!!!

30 tháng 5 2018

+) Với x = 0 ta có :

\(0.f\left(0-2\right)=\left(0-4\right).f\left(0\right)\)

\(\Rightarrow0.f\left(-2\right)=-4.f\left(0\right)\)

\(\Rightarrow0=-4.f\left(0\right)\)

\(\Rightarrow f\left(0\right)=0\)

Như vậy x = 0 là một nghiệm của đa thức f(x)

+) Với x = 4 ta có :

\(4.f\left(4-2\right)=\left(4-4\right).f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0.f\left(4\right)\)

\(\Rightarrow4.f\left(2\right)=0\)

\(\Rightarrow f\left(2\right)=0\)

Như vậy x = 4 là một nghiệm của đa thức f(x)

Vậy đa thức f(x) có ít nhất hai nghiệm

_Chúc bạn học tốt_

30 tháng 5 2018

Bài giải 

Cho \(x=0\)thì \(0.f\left(-2\right)=-4.f\left(0\right)=0\)

Cho \(x=2\)thì \(2.f\left(0\right)=-2.f\left(2\right)\)nên \(f\left(2\right)=-f\left(0\right)=0\)

Vậy \(f\left(x\right)\) có ít nhất 2 nghiệm là \(0\) và \(2\).