Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x = 0 vào f ta có:
f(0) = c mà đa thức tại x = 0 là số nguyên
=> c là số nguyên
thay x = 1 vào f ta có:
f(1) = a + b + c mà đa thức tại x = 1 là số nguyên và c là số nguyên
=> a + b là số nguyên
thay x = -1 vào f ta có:
f(-1) = a - b + mà đa thức tại x = -1 là số nguyên và c là số nguyên
=> a - b là số nguyên
ta có: a + b là số nguyên và a - b là số nguyên
=> (a+b) + (a-b) là số nguyên
=> 2a là số nguyên
\(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)
\(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)
\(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)
Do f(x)=ax3+bx2+cx+d đạt giá trị nguyên với mọi x => d;a+b+c+d;-a+b-c+d nguyên
=>(a+b+c+d)+(-a+b-c+d)=2b+2d mà d nguyên => 2d nguyên
=>(2b+2d)-2d=2b nguyên
Ta có f(0)=c chia hết cho 3
f(1)=a+b+c chia hết cho 3, mà c chia hết cho 3=> a+b chia hết cho 3.
f(-1)=a-b+c chia hết cho 3, c chia hết cho 3 => a-b chia hết cho 3.
Vì a,b,c nguyên nên a+b+a-b=2a chia hết cho 3. Do 2 và 3 nguyên tố cùng nhau => a phải chia hết cho 3.
a,c chia hết cho 3, a+b+c chia hết cho 3=> b chia hết cho 3
\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)
Mà M(x) nguyên nên d nguyên
\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên
\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên
\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên
Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên
\(P\left(0\right)=d\inℤ\left(1\right)\)
\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)
\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)
\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)
\(\Rightarrow6a\inℤ\)
Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên