Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt trên tương đương: (x2-2x+1)+(y2+2y+1)+(4x2+8xy+4y2)=0
<=>(x-1)2+(y+1)2+(2x+2y)2=0
<=>x=1;y=-1;x=-y
Vậy x=1;y=-1
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Ta có 5x2+5y2+8xy-2x+2y+2=0
=> (4x2+8xy+4y2)+(x2-2x+1)+(y2+2y+1)=0
=> (2x+2y)2+(x-1)2+(y+1)2=0
=> (2x+2y)2=(x-1)2=(y+1)2=0
=> x=1 và y=-1
=> M=(x+y)2015+(x-2)2016+(y+1)2017
=(1-1)2015+(1-2)2016+(-1+1)2017
= 0+(-1)2016+0
=1
tính M=(x+y)2015+(x-2)2016+(y+1)2017
Ta có
5x^2 + 5y^2 + 8xy - 2x + 2y + 2= 0
<=> 4x^2 + 8xy + 4y^2 + x^2 - 2x + 1 + y^2 + 2y + 1 = 0
<=> (4x^2 + 8xy + 4y^2) + (x^2 - 2x + 1) + (y^2 + 2y + 1) =0
<=> (2x + 2y)^2 + (x - 1)^2 + (y + 1)^2 =0
<=> 2x + 2y= 0 hoặc x - 1= 0 và y + 1= 0
<=> x=1 và y= - 1 thay x=1, y= - 1 vào biểu thức M ta có
M= (1 - 1)^2015 + (1 - 2)^2016 + ( - 1 + 1)^2017
= 0 + - 1^2016 + 0 = 1
\(8x^2+14xy+8y^2+2x-2y+2=0\)
\(\Leftrightarrow7\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Do \(\left\{{}\begin{matrix}7\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\) ; \(\forall x;y\)
Nên \(7\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0;\forall x;y\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)