Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
\(gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4\)
Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3\)
Ta có: \(LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\)
\(=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}\)
\(=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}\) (thay cái giả thiết vào:v)
\(\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}\)
\(=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}\) (1)
Từ giả thiết dễ dàng chứng minh \(ab\le1\). Từ đó thay vào (1) ta có đpcm.
Nhớ có câu tương tự bài này mà sao nót ko hiển thị nhỉ? Thôi kệ nhai lại vậy:v
gt\Leftrightarrow\left(\frac{1}{x}+1\right)\left(\frac{1}{y}+1\right)=4gt⇔(x1+1)(y1+1)=4
Đặt \frac{1}{x}=a;\frac{1}{y}=b\Rightarrow\left(a+1\right)\left(b+1\right)=4\Rightarrow ab+a+b=3x1=a;y1=b⇒(a+1)(b+1)=4⇒ab+a+b=3
Ta có: LHS=\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}LHS=3x2+11+3y2+11
=\frac{1}{\sqrt{3\left(\frac{1}{a}\right)^2+1}}+\frac{1}{\sqrt{3\left(\frac{1}{b}\right)^2+1}}=3(a1)2+11+3(b1)2+11
=\frac{a}{\sqrt{a^2+3}}+\frac{b}{\sqrt{b^2+3}}=\frac{a}{\sqrt{\left(a+1\right)\left(a+b\right)}}+\frac{b}{\sqrt{\left(b+1\right)\left(a+b\right)}}=a2+3a+b2+3b=(a+1)(a+b)a+(b+1)(a+b)b (thay cái giả thiết vào:v)
\le\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{a+b}{a+b}\right)=\frac{1}{2}\left(\frac{a}{a+1}+\frac{b}{b+1}\right)+\frac{1}{2}≤21(a+1a+b+1b+a+ba+b)=21(a+1a+b+1b)+21
=\frac{1}{2}\left(\frac{ab+3}{ab+a+b+1}\right)+\frac{1}{2}=\frac{1}{2}\left(\frac{ab+3}{4}\right)+\frac{1}{2}=21(ab+a+b+1ab+3)+21=21(4ab+3)+21 (1)
Từ giả thiết dễ dàng chứng minh ab\le1ab≤1. Từ đó thay vào (1) ta có đpcm.
ta là nhà tiên chi đây
.
.
.
.
.
.
chắc chắn bọ̣̣̣̣̣̣̣̣̣n mày sẽ̃̃̃̃̃̃̃̃ nhấ́́́́́n đọc thêm
Đặt \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\Rightarrow ab+a+b=3\)
\(\Rightarrow ab+2\sqrt{ab}\le3\Rightarrow\left(\sqrt{ab}+3\right)\left(\sqrt{ab}-1\right)\le0\)
\(\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
\(P=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}=\frac{a}{\sqrt{ab+a+b+a^2}}+\frac{b}{\sqrt{ab+a+b+b^2}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+1\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+1\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+1}+\frac{b}{a+b}+\frac{b}{b+1}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{a}{a+1}+\frac{b}{b+1}\right)=\frac{1}{2}\left(1+\frac{ab+a+ab+b}{ab+a+b+1}\right)=\frac{1}{2}\left(1+\frac{ab+3}{4}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{1+3}{4}\right)=1\)
Dấu " = " xảy ra khi \(a=b=1\) hay \(x=y=1\)
Chúc bạn học tốt !!!
4.
Xét biểu thức : \(1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{k-\left(k-1\right)-1}{k\left(k-1\right)}\right)=1^2+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}+2\left(\frac{1}{k-1}-\frac{1}{k}-\frac{1}{k\left(k-1\right)}\right)=\left(1+\frac{1}{\left(k-1\right)}-\frac{1}{k}\right)^2\)
\(\Rightarrow\sqrt{1+\frac{1}{\left(k-1\right)^2}+\frac{1}{k^2}}=\left|1+\frac{1}{k-1}-\frac{1}{k}\right|\)
Áp dụng : \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}=1+\frac{1}{1}-\frac{1}{2}\)
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)
...............................................................
\(\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}=1+\frac{1}{2015}-\frac{1}{2016}\)
Cộng vế các đẳng thức trên được : \(B=2016-\frac{1}{2016}\)
ý thứ 2 là 8/7 chứ không phải 8/8 các bạn nhé. M đánh nhầm chữ
Đặt \(\left(\frac{1}{x};\frac{1}{y}\right)=\left(a;b\right)\Rightarrow ab+a+b=3\)
\(\Rightarrow ab+2\sqrt{ab}\le3\Rightarrow\left(\sqrt{ab}+3\right)\left(\sqrt{ab}-1\right)\le0\)
\(\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
\(P=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}=\frac{a}{\sqrt{ab+a+b+a^2}}+\frac{b}{\sqrt{ab+a+b+b^2}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+1\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+1\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+1}+\frac{b}{a+b}+\frac{b}{b+1}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{a}{a+1}+\frac{b}{b+1}\right)=\frac{1}{2}\left(1+\frac{ab+a+ab+b}{ab+a+b+1}\right)=\frac{1}{2}\left(1+\frac{ab+3}{4}\right)\)
\(P\le\frac{1}{2}\left(1+\frac{1+3}{4}\right)=1\)
Dấu "=" xảy ra khi \(a=b=1\) hay \(x=y=1\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
cho bài cm hình đi
vd như Cho hình bình hành ABCD. trên các cạnh AB, BC, CD, DA theo thứ tự lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. Chứng minh tứ giác MNPQ là hình bình hành
Chả biết đề có đúng không nữa nhưng mà nếu thử x = 0 ; y = -1 thì VT = 1,5 > 1 :)