Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+4\left(b+c\right)^2-bc=4a\left(b+c\right)\)
\(\Rightarrow\left[a-2\left(b+c\right)\right]^2=bc\)
Do \(\left(b,c\right)=1\) và \(b.c\) là 1 số chính phương
\(\Rightarrow b,c\) đều là các số chính phương
\(c\left(ac+1\right)^2=\left(2c+b\right)\left(3c+b\right)\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)=6c^2+2bc+3bc+b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1\right)-6c^2-2bc-3bc=b^2\)
\(\Leftrightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=b^2\) ( 1 )
Dễ thấy \(a^2c^2+2ac-6c⋮c\) ( 2 )
Gọi d là ƯC của c và \(a^2c^2+2ac-6c-5b+1\) , ta có :
\(\orbr{\begin{cases}c⋮d\\a^2c^2+2ac-6c-5b+1⋮d\end{cases}}\Rightarrow c-a^2c^2+2ac-6c-5b+1⋮d\) ( 3 )
Từ ( 2 ) và ( 3 ) => 1 - 5b chia hết cho d
Đặt c = kd ; a2c2 + 2ac - 6c - 5b + 1 = td ( \(k;t\in Z\))
\(\Rightarrow c\left(a^2c^2+2ac+1-6c-5b\right)=kd.td=ktd^2\) ( 4 )
Từ ( 1 ) và ( 4 ) => b2 = ktd2
\(\Rightarrow b⋮d\Rightarrow5b⋮d\). Mà 1 - 5b chia hết cho d
\(\Rightarrow1⋮d\Rightarrow d=1\)
=> Đpcm
Sửa lại một tí
Chỗ ( 2 ) chỉnh dấu lại :)
( 3 ) \(c-a^2c^2-2ac+6c+5b-1⋮d\)
Từ ( 2 ) và ( 3 ) => 5b - 1 chia hết cho d
Từ ( 1 ) và ( 4 ) ... => 5b chia hết cho d
=> 1 chia hết cho d => d = 1
=> Đpcm
Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai
Giúp mình với ạ TT!!!