Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cosi:
`1/x^2+1/y^2>=2/(xy)`
`<=>2>=2/(xy)`
`<=>1>=1/(xy)`
`<=>xy>=1`
Dấu "=" xảy ra khi `x=y=1`
Áp dụng cosi
`1/x^2+1/y^2>=2/(xy)`
`=>1/2>=2/(xy)`
`=>xy>=4`
Aps dụng cosi
`=>x+y>=2\sqrt{xy}=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)
\(\Rightarrow xy\ge4\)
Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy min A = 4 khi $x=y=2$
\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{3}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4xy}\)
Ta có BĐT phụ: \(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(đúng )
Dấu "=" xảy ra <=> x=y
\(\Rightarrow P\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1}+2+\frac{5}{1}=11\)
Dấu"=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy Min P =11 \(\Leftrightarrow x=y=\frac{1}{2}\)
\(6xy=x+y\ge2\sqrt[]{xy}\Rightarrow\sqrt{xy}\ge\dfrac{1}{3}\Rightarrow xy\ge\dfrac{1}{9}\Rightarrow\dfrac{1}{xy}\le9\)
\(M=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1+\dfrac{xy+x}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{x+1}{xy+1}+\dfrac{x+1}{1-xy}}{\dfrac{x+1}{1-xy}-\dfrac{x+1}{xy+1}}=\dfrac{\dfrac{1}{1-xy}+\dfrac{1}{1+xy}}{\dfrac{1}{1-xy}-\dfrac{1}{1+xy}}\)
\(M=\dfrac{1+xy+1-xy}{1+xy-1+xy}=\dfrac{2}{2xy}=\dfrac{1}{xy}\le9\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(y\ge1+xy\Rightarrow1\ge\dfrac{1}{y}+x\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le4\Rightarrow\dfrac{y}{x}\ge4\)
\(G=\dfrac{x}{y}+\dfrac{y}{x}=\left(\dfrac{x}{y}+\dfrac{y}{16x}\right)+\dfrac{15}{16}.\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4=\dfrac{17}{4}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
\(B=\dfrac{2^2}{x}+\dfrac{3^2}{y}\ge\dfrac{\left(2+3\right)^2}{x+y}=25\)
\(B_{min}=25\) khi \(\left(x;y\right)=\left(\dfrac{2}{5};\dfrac{3}{5}\right)\)
\(P=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{4xy}+4xy\right)+\dfrac{5}{4xy}\)
\(\ge\dfrac{4}{x^2+y^2+2xy}+2+\dfrac{5}{4}.\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}\)
\(=4+2+5=11\)
Vậy GTNN là P = 11 đạt được khi \(x=y=\dfrac{1}{2}\)
chi tiết hơn dk ko bạn tại đùng một cái ra =4+2+5=11 luôn mình ko hiểu bạn giải nốt phần cuối dk ko