K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Điều kiện cần và đủ để n2 chia hết cho 5 là n chia hết cho 5

Vì nếu n chia hết cho 5 thì n=5k

\(n^2=25k^2=5\cdot5k^2⋮5\)

b: Điều kiện cần và đủ để n2 chia hết cho 5 là n2+1 không chia hết cho5 và n2-1 không chia hết cho 5

 

Đơn giản là không có chữ gì về định lý a và b trên câu hỏi của bạn.=.='

5 tháng 7 2018

nó bị lỗi để mk sửa lại thông cảm please

Em học lớp 8 nên không chắc lắm, vì đội tuyển có dạng này rồi nên em giúp chị nhé :

Áp dụng BĐT Cauchy cho hai số a,b dương ta có :

\(\left(a+b\right)\ge2\cdot\sqrt{ab}\) (1)

\(\frac{1}{a}+\frac{1}{b}\ge2\cdot\sqrt{\frac{1}{ab}}\) (2)

Nhân vế với vế của BĐT (1) và (2) ta được :

\(\left(a+b\right)\left(\frac{1}{b}+\frac{1}{b}\right)\ge2\cdot\sqrt{ab}\cdot2\cdot\sqrt{\frac{1}{ab}}=4\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\) (đpcm)

2 tháng 1 2020

chị cảm ơn nhé lớp 8 thế là giỏi rồi

NV
26 tháng 8 2020

Mệnh đề A sai (ví dụ \(x=-1\Rightarrow x^3< x^2\))

Phủ định: \(\overline{A}="\exists x\in R:x^3\le x^2"\)

Mệnh đề B đúng, ví dụ \(x=0\)

Phủ định: \(\overline{B}="\forall x\in N;x⋮̸x+1"\)

15 tháng 9 2021

kdjfja

bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau: a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0 b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1) bài 2: xác định tính đúng-sai của các mệnh đề sau : a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4 bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''. Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính...
Đọc tiếp

bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau:

a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0

b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1)

bài 2: xác định tính đúng-sai của các mệnh đề sau :

a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4

bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''.

Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính đúng-sai của cả 2 mệnh đề.

b) Phát biểu mệnh đề đảo của P và chứng tỏ mệnh đề đó là đúng.Phát biểu mệnh đề dưới dạng mệnh đề tương đương

Bài 4: Xét tính đúng sai của các mệnh đề sau:

a) P: ''∀x ∈ R,∀y ∈ R: x + y = 1'' b) Q:'' ∃x ∈ R, ∃y ∈ R: x + y = 2''

Mọi người giải hộ để em đối chiếu đáp án của mình với ạ,em cảm ơn.

1
NV
1 tháng 7 2019

Bài 1:

a/ Với \(x=0\Rightarrow0-0+1>0\) đúng

Vậy mệnh đề đúng

Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)

Hoặc: \(∄x\in R,x^3-x^3+1>0\)

b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Vậy mệnh đề đã cho là đúng

Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Câu 2:

a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)

\(\Rightarrow\) Mệnh đề sai

b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)

\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)

Câu 3:

P là mệnh đề đúng

\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"

\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"

\(\overline{P}\) là mệnh đề sai

Chứng minh P đúng:

Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\)\(b\ne0\)

\(\Rightarrow2x=\frac{2a}{b}\)

Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ

b/ Mệnh đề đảo của P:

" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"

Chứng minh tương tự như trên

c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"

Bài 4:

a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)

b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)

10 tháng 5 2023

Câu 1 \(k\) chạy từ 2 nhé, mình quên.

18 tháng 5 2023

câm mồm vào thằng nhóc