Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=1/1x2 + 1/2x3 + 1/3x4 + ... + 1/99x100
=(1 -1/2) +(1/2 -1/3) +(1/3 - 1/4) +......+(1/99 - 1/100)
(gạch bỏ -1/2 và 1/2 ; -1/3 và 1/3 ; .........-1/99 và 1/99)
=1-1/100
=99/100
Ta có:
1/2=50/100
vì 99/100>50/100
nên C>1/2
C = 1/2.3 + 1/ 3.4 + 1/4.5 + ... + 1/99.100
= (1/2-1/3) + (1/3-1/4) + (1/4-1/5) + ... + (1/99-1/100)
= 1/2-1/100
= 49/100
so sánh 49/100 với 1/2
49/100 với 50/100
=) 49/100 < 1/2 (vì 49/100 < 50/100)
chúc bn học tốt
B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)
B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)
B= 1/2 +1/100=51/100
k mk nhóe
sai thì chỉ mk nhoa
a)A=1/51+1/52+...+1/100
=>A>1/100+1/100+...+1/100
=>A>50/100(vì có 50 số hạng)
=> A>1/2
b)Ta có:
B=1/2.3+1/3.4+...+1/99.100
=> B=1/2-1/3+1/3-1/4+...+1/99-1/100
=> B=1/2-1/100
Mà 1/100>0
=> B<1/2
=> B<1/2<A
=>B<A
sud kênh Mik ủng hộ với tên kênh là M.ichibi
kênh làm về MINECRAFT
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
tự tính
\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)
\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)
\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)
\(A=\frac{2016}{2017}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\Rightarrow C>\frac{1}{2}\)
Ta có : \(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy \(C< \frac{1}{2}\)