Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Điều kiện \(\hept{\begin{cases}a\ge0\\a\ne\frac{1}{9}\end{cases}}\) \(\Rightarrow0\le a\ne\frac{1}{9}\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(a-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(1-3\sqrt{a}\right)+\left(\sqrt{a}-2\right)\left(1+3\sqrt{a}\right)+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}:\left(\frac{3a\sqrt{a}-2\sqrt{a}+6-a}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}-6a+\sqrt{a}+3a-2-6\sqrt{a}+5\sqrt{a}+3}{\left(1-3\sqrt{a}\right)\left(1+3\sqrt{a}\right)}.\left(\frac{3\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\right)\)
\(=\frac{3a-2\sqrt{a}-1}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{1+3\sqrt{a}}.\frac{1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
\(=\frac{\sqrt{a}-1}{3a\sqrt{a}-2\sqrt{a}+6-a}\)
Hình như đề sai rồi bạn :(
a/ Điều kiện xác định : \(\hept{\begin{cases}a\ge0\\a\ne9\end{cases}\Leftrightarrow}0\le a\ne9\)
b/ \(M=\left(\frac{2\sqrt{a}}{3\sqrt{a}+1}+\frac{\sqrt{a}-2}{1-3\sqrt{a}}-\frac{5\sqrt{a}+3}{9a-1}\right):\left(1-\frac{2\sqrt{a}-6}{3\sqrt{a}-1}\right)\)
\(=\frac{2\sqrt{a}\left(3\sqrt{a}-1\right)+\left(2-\sqrt{a}\right)\left(3\sqrt{a}+1\right)-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}:\frac{\sqrt{a}+5}{3\sqrt{a}-1}\)
\(=\frac{6a-2\sqrt{a}+6\sqrt{a}+2-3a-\sqrt{a}-5\sqrt{a}-3}{\left(3\sqrt{a}+1\right)\left(3\sqrt{a}-1\right)}.\frac{3\sqrt{a}-1}{\sqrt{a}+5}\)
\(=\frac{3a-2\sqrt{a}-1}{3\sqrt{a}+1}.\frac{1}{\sqrt{a}+5}\)
\(=\frac{\left(3\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(3\sqrt{a}+1\right)\left(\sqrt{a}+5\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+5}\)
c/ \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\) thay vào M được
\(\frac{\sqrt{5}-2-1}{\sqrt{5}-2+5}=\frac{\sqrt{5}-3}{\sqrt{5}+3}=\frac{-7+3\sqrt{5}}{2}\)
d/ \(M=\frac{\sqrt{a}-1}{\sqrt{a}+5}=\frac{\sqrt{a}+5-6}{\sqrt{a}+5}=1-\frac{6}{\sqrt{a}+5}\)
Với mọi \(0\le a\ne9\) thì ta luôn có \(\sqrt{a}+5\ge5\Leftrightarrow\frac{6}{\sqrt{a}+5}\le\frac{6}{5}\Leftrightarrow-\frac{6}{\sqrt{a}+5}\ge-\frac{6}{5}\Leftrightarrow1-\frac{6}{\sqrt{a}+5}\ge1-\frac{6}{5}\)
\(\Rightarrow M\ge-\frac{1}{5}\)
Đẳng thức xảy ra khi a = 0
Vậy giá trị nhỏ nhất của M bằng \(-\frac{1}{5}\) khi a = 0
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download
a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)
\(\Leftrightarrow\sqrt{x}+1\ge1\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)
\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi x=0
Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0