Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{4-x}+\dfrac{1}{2+\sqrt{x}}\right)\left(\dfrac{2}{\sqrt{x}}-1\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\cdot\left(\dfrac{2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\right)\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\dfrac{-4}{\sqrt{x}+2}\)
Lời giải:
a)
\(A=\left[\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}\right].\frac{2-\sqrt{x}}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+2+2\sqrt{x}+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{4\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{2-\sqrt{x}}{\sqrt{x}}=\frac{-4}{\sqrt{x}+2}\)
b)
$A< -1\Leftrightarrow \frac{-4}{\sqrt{x}+2}+1< 0$
$\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+2}< 0$
$\Leftrightarrow \sqrt{x}-2< 0\Leftrightarrow 0\leq x< 4$
Kết hợp với ĐKXĐ suy ra $0< x< 4$
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
\(\left(đk:x\ne\pm1\right)\)
\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}}{x-1}\)
Điều kiện: \(x\ge0,x\ne1\)
\(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}+1}{x\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\\ =\left(\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\right):\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\\ =\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}=\dfrac{2}{x+\sqrt{x}+1}\)
Ta có \(x+\sqrt{x}+1=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\Rightarrow A>0\)
Lại có: \(A-2=\dfrac{2}{x+\sqrt{x}+1}-2=\dfrac{-2\left(x+\sqrt{x}\right)}{x+\sqrt{x}+1}\)
Mà \(x+\sqrt{x}+1>0;x+\sqrt{x}>0\) với mọi \(x\in TXĐ\)
\(\Rightarrow A-2< 0\Rightarrow A< 2\)
Vậy \(0< A< 2\)
ĐKXĐ: \(x>0;x\ne1\)
\(Q=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right).\dfrac{1}{\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{1}{\sqrt{x}}=\dfrac{2}{x-1}\)
b.
Để \(Q\in Z\Rightarrow2⋮\left(x-1\right)\Rightarrow x-1=Ư\left(2\right)\)
\(\Rightarrow x-1=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x=\left\{-1;0;2;3\right\}\)
Kết hợp ĐKXĐ: \(\Rightarrow x=\left\{2;3\right\}\)
(Đáp án của đề bài đã quên mất ĐKXĐ ban đầu nên ko loại 2 giá trị \(x=-1;x=0\))
a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b) Thay x=3+2\(\sqrt{2}\)
A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)
A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0
\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)
a) Ta có: \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}}{x-1}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)