K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(Q=\left(\dfrac{a^2+4a+4-a^2+4a-4+4a^2}{\left(a-2\right)\left(a+2\right)}\right):\dfrac{a\left(a-3\right)}{5a\left(2-a\right)}\)

\(=\dfrac{4a^2+8a}{\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-5\left(a-2\right)}{a-3}\)

\(=\dfrac{-20a}{a-3}\)

b: Q chia hết cho 20 thì a/a-3 là số nguyên

=>\(a-3\in\left\{1;-1;3;-3\right\}\)

=>a=4 hoặc a=6

 

16 tháng 5 2023

thank yeu

 

5 tháng 8 2020

\(A=\frac{a}{a-1}-\frac{a}{a+1}+\frac{2}{a^2-1}\left(ĐK:a\ne\pm1\right)\)

\(=\frac{a\left(a+1\right)-a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{2}{a^2-1}\)

\(=\frac{a^2+a-a^2+a+2}{a^2-1}=\frac{2}{a-1}\left(Q.E.D\right)\)

Để A nguyên suy ra 2/a-1 nguyên

\(< =>2⋮a-1< =>a\in\left\{2;3;-1;0\right\}\)

Để \(A\ge1< =>\frac{2}{a-1}\ge1< =>2\ge a-1< =>a\le3\)

mấy bài khác để từ từ mình làm dần hoặc bạn khác làm

27 tháng 6 2019

\(a,\)\(A=\frac{a^2+4a+4}{a^3+2a^2-4a-8}\)

\(=\frac{\left(a+2\right)^2}{a^2\left(a+2\right)-4\left(a+2\right)}\)

\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}\)

\(=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a+2\right)\left(a-2\right)}\)

\(=\frac{1}{a-2}\)

\(a,A=\frac{\left(a+2\right)^2}{\left(a+2\right)\left(a^2-4\right)}=\frac{a+2}{\left(a-2\right)\left(a+2\right)}=\frac{1}{a-2}\)

b, Để  A có giá trị là một số nguyên thì \(1⋮a-2\)

=> \(\orbr{\begin{cases}a-2=1\\a-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3\\a=1\end{cases}}}\)

27 tháng 9 2020

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

27 tháng 9 2020

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
a. ĐKXĐ: $a\neq \pm 2$

\(M=\frac{(2+a)^2}{(2-a)(2+a)}+\frac{4a^2}{(2-a)(2+a)}-\frac{(2-a)^2}{(2+a)(2-a)}\)

\(=\frac{(2+a)^2+4a^2-(2-a)^2}{(2-a)(2+a)}=\frac{4a(a+2)}{(2-a)(2+a)}=\frac{4a}{2-a}\)

b.

$|a+1|=3\Rightarrow a+1=\pm 3\Rightarrow a=-2$ hoặc $a=-4$

Vì $a\neq \pm 2$ nên $a=-4$

Khi đó: $M=\frac{4a}{2-a}=\frac{4(-4)}{2-(-4)}=\frac{-8}{3}$

c.

Trước tiên cần tìm $a$ để $M$ nguyên đã.

$M=\frac{4a}{2-a}=\frac{8-4(2-a)}{2-a}=\frac{8}{2-a}-4$ nguyên khi $\frac{8}{2-a}$ nguyên 

$\Rightarrow 2-a\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$

$\Rightarrow a\in\left\{1; 3; 0; 4; -2; 6; 10; -6\right\}$.

Thử lại thấy $a\in\left\{1; 3; 0; 4\right\}$ thỏa mãn $M$ là số nguyên chia hết cho $4$

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Bạn xem thử tại đây:

https://hoc24.vn/cau-hoi/cho-bieu-thucm-dfrac2a2-a-dfrac4a2a2-4-dfrac2-a2aa-rut-gon-mb-tinh-gia-tri-cua-m-khi-a13c-tim-a-z-de-m-la-so-nguyen-chia-het-cho-4.7975358921144

 

27 tháng 12 2015

câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.

câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120

bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào

 

 

21 tháng 12 2018

\(1.a,Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}=\frac{x+3}{2x+1}+\frac{7-x}{2x+1}\)

            \(=\frac{x+3+7-x}{2x+1}=\frac{10}{2x+1}\)

\(b,\) Vì \(x\inℤ\Rightarrow\left(2x+1\right)\inℤ\)

Q nhận giá trị nguyên \(\Leftrightarrow\frac{10}{2x+1}\) nhận giá trị nguyên

                                \(\Leftrightarrow10⋮2x+1\)

                                \(\Leftrightarrow2x+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Mà \(\left(2x+1\right):2\) dư 1 nên \(2x+1=\pm1;\pm5\)

\(\Rightarrow x=-1;0;-3;2\)

Vậy.......................