Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: x \(\ge\)0; x \(\ne\)1; x \(\ne\)9
1) \(B=\left(\frac{2x+3}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)
\(B=\frac{2x+3-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-x-4}{x+\sqrt{x}+1}\)
\(B=\frac{-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}-3}\)
\(B=\frac{-\left(x+2\sqrt{x}-\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(B=\frac{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+2}{3-\sqrt{x}}\)
2. \(B=\frac{\sqrt{x}+2}{3-\sqrt{x}}=\frac{-\left(3-\sqrt{x}\right)+5}{3-\sqrt{x}}=-1+\frac{5}{3-\sqrt{x}}\)
Để B \(\in\)Z <=> 5 \(⋮\)\(3-\sqrt{x}\)
<=> \(3-\sqrt{x}\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Do \(3-\sqrt{x}\le\)3 => 3 - \(\sqrt{x}\)\(\in\){1; -1; -5}
Lập bảng:
\(3-\sqrt{x}\) | 1 | -1 | -5 |
x | 4 | 16 | 64 |
Vậy ...