Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Tìm x để A là số hữu tỉ.
để A là số hữu tỉ => x - 1 \(\ne\)0
=> x \(\ne\)1
vậy x thuộc Z và x \(\ne\) 1
`a,`
`A=3/(x-1)`
Để `A` là số hữu tỉ
`->x-1 \ne 0`
`->x\ne 0+1`
`-> x \ne 1`
Vậy `x \ne 1` để `A` là số hữu tỉ
`b,`
`A=3/(x-1) (x \ne 1)`
Để `A` thuộc Z
`->3` chia hết cho `x-1`
`->x-1` thuộc ước của `3 = {1;-1;3;-3}`
`->x` thuộc `{2;0;4;-2}` (Thỏa mãn)
Vậy `x` thuộc `{2; 0; 4;-2}` để `A` thuộc Z
`c,`
`A=3/(x-1) (x \ne 1)`
Để `A` lớn nhất
`->3/(x-1)` lớn nhất
`->x-1` nhỏ nhất
`->x-1=1` (Do `1` là số nguyên dương nhỏ nhất)
`->x=2` (Thỏa mãn)
Với `x=2`
`->A=3/(2-1)=3/1=3`
Vậy `max A=3` khi `x=2`
`d,`
`A=3/(x-1) (x \ne 1)`
Để `A` nhỏ nhất
`->3/(x-1)` nhỏ nhất
`->x-1` lớn nhất
`->x-1=-1` (Do `-1` là số nguyên âm lớn nhất)
`->x=0`
Với `x=0`
`-> A=3/(0-1)=3/(-1)=-3`
Vậy `min A=-3` khi `x=0`
a) Ta co \(A=\frac{4-x}{x-2}=\frac{-\left(x-4\right)}{x-2}=\frac{-\left(x-2\right)+2}{x-2}\)\(=\frac{-\left(x-2\right)}{x-2}+\frac{2}{x-2}\)\(=-1+\frac{2}{x-2}\)
De A nguyen <=> \(-1+\frac{2}{x-2}\)nguyen <=> \(2⋮x-2\)
=> \(x-2\in U\left\{2\right\}=\left\{-2:-1;1;2\right\}\)
\(x-2=-2\)=>\(x=0\)(thoa)
\(x-2=-1\)=>\(x=1\)(thoa)
\(x-2=1\)=>\(x=3\)(thoa)
\(x-2=2\)=>\(x=4\)(thoa)
xin loi mk lam duoc den day thoi
a) Ta có : \(A=\frac{4-x}{x-2}=\frac{-x+4}{x-2}=\frac{-\left(x-4\right)}{x-2}\)
\(=\frac{-\left(x-2-2\right)}{x-2}=-1+\frac{2}{x-2}\)
Do đó: A nguyên <=> \(\frac{2}{x-2}\) nguyên <=> 2 chia hết cho x -2 ( vì x - 2 thuộc Z )
<=> x -2 thuộc Ư(2) = { -1;1;-2;2 <=> x thuộc { 1; 3; 0; 4 }
Vậy x = ....................
b) Vì \(A=-1+\frac{2}{x-2}\) nên A đạt giá trị nhỏ nhất <=> 2/x-2 có giá trị nhỏ nhất
<=> x - 2 bé hơn 0 và có giá trị lớn nhất <=> x - 2 = -1 <=> x = 1
Khi đó : A = \(-1+\frac{2}{1-2}=-1-2=-3\)
Vậy .................................
a, \(A=\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để \(A\in Z\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Mà \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)
\(\Rightarrow\left(x-1\right)^2+2\in\left\{2;3;6\right\}\)
Ta có bảng:
(x - 1)2 + 2 | 2 | 3 | 6 |
x | 1 | 2 | 3 |
Vậy...
b, Theo câu a ta có: \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-1\right)^2+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTLN của A = 3 khi x = 1
a) Ta có :
\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)
Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)Z \(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )
\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
(x-1)2+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | loại | loại | 0 | loại | \(\orbr{\begin{cases}2\\0\end{cases}}\) | loại | \(\orbr{\begin{cases}3\\-1\end{cases}}\) | loại |
Vậy x = { 0 ; 2 ; 3 ; -1 }
b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN
Mà ( x - 1 )2 \(\ge\)0 \(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)2 \(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1
Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1
A=\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}\)