K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

Ta có :

\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(=\frac{12}{4.16}+\frac{20}{16.36}+...+\frac{388}{9216.9604}+\frac{396}{9604.10000}\)

\(=\frac{1}{4}-\frac{1}{16}+\frac{1}{16}-\frac{1}{36}+...+\frac{1}{9604}-\frac{1}{10000}\)

\(=\frac{1}{4}-\frac{1}{10000}< \frac{1}{4}\)

\(\Leftrightarrow B< \frac{1}{4}\)

3 tháng 5 2019

B=\(\frac{12}{4.16}\)+\(\frac{20}{16.36}\)+...+\(\frac{396}{9604.10000}\)

Ta có:\(\frac{12}{4.16}\)=\(\frac{1}{4}\)-\(\frac{1}{16}\)

         \(\frac{20}{16.36}\)=\(\frac{1}{16}\)-\(\frac{1}{36}\)

            ...

Khi đó:B=\(\frac{1}{4}\)-\(\frac{1}{16}\)+\(\frac{1}{16}\)-\(\frac{1}{36}\)+...+\(\frac{1}{9604}\)-\(\frac{1}{10000}\)=\(\frac{1}{4}\)-\(\frac{1}{10000}\)<\(\frac{1}{4}\)

Vậy: B<\(\frac{1}{4}\)

26 tháng 4 2018

Ta có:

  B=\(\frac{4^2-2^2}{2^2\times4^2}+\frac{6^2-4^2}{4^2\times6^2}+...+\frac{98^2-96^2}{96^2\times98^2}+\frac{100^2-98^2}{98^2\times100^2}\)

   =\(\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

  = \(\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\) 

22 tháng 4 2018

Ai làm nhanh và đúng nhất thì mình k cho nhé <3

3 tháng 5 2018

\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+............+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{\left(2.4\right)^2}+\frac{6^2-4^2}{\left(4.6\right)^2}+..........+\frac{98^2-96^2}{\left(96.98\right)^2}+\frac{100^2-98^2}{\left(98.100\right)^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-...............-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{10000}\)

\(B=\frac{2500}{10000}-\frac{1}{10000}\)

\(B=\frac{2499}{10000}\)

Vậy B = \(\frac{2499}{10000}\)

1 tháng 5 2018

Bài 1:

ta có: \(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{2^2.4^2}+\frac{6^2-4^2}{4^2.6^2}+...+\frac{98^2-96^2}{96^2.98^2}+\frac{100^2-98^2}{98^2.100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)

\(\Rightarrow B< \frac{1}{4}\)

Bài 2:

ta có: \(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Học tốt nhé bn !!

1 tháng 5 2018

B = \(\dfrac{12}{\left(2.4\right)^2}+\dfrac{20}{\left(4.6\right)^2}+...+\dfrac{388}{\left(96.98\right)^2}+\dfrac{396}{\left(98.100\right)^2}\)

= \(\dfrac{4^2-2^2}{2^{2^{ }}.4^{2^{ }}}+\dfrac{6^{2^{ }}-4^2}{4^2.6^2}+...+\dfrac{98^2-96^2}{96^2.98^2}+\dfrac{100^2-98^2}{98^2.100^2}\)

=\(\dfrac{1}{2^{2^{ }}}-\dfrac{1}{4^{2^{ }}}+\dfrac{1}{4^2}-\dfrac{1}{6^2}+\dfrac{1}{6^2}+....-\dfrac{1}{98^2}+\dfrac{1}{98^2}-\dfrac{1}{100^2}\)

= \(\dfrac{1}{2^2}-\dfrac{1}{100^2}=\dfrac{1}{4}-\dfrac{1}{100^2}< \dfrac{1}{4}\)

Vậy B < \(\dfrac{1}{4}\)

1 tháng 5 2018

B = 12(2.4)2+20(4.6)2+...+388(96.98)2+396(98.100)212(2.4)2+20(4.6)2+...+388(96.98)2+396(98.100)2

= 42−2222.42+62−4242.62+...+982−962962.982+1002−982982.100242−2222.42+62−4242.62+...+982−962962.982+1002−982982.1002

=122−142+142−162+162+....−1982+1982−11002122−142+142−162+162+....−1982+1982−11002

= 122−11002=14−11002<14122−11002=14−11002<14

Vậy B < 14

8 tháng 5 2018

B<\(\frac{1}{4}\)

24 tháng 11 2018

7 tháng 5 2018

B=\(\frac{12}{2^2.4^2}+\frac{20}{4^2.6^2}+......+\frac{388}{96^2.98^2}+\frac{396}{98^2.100^2}\)

   =\(\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

   =\(\frac{1}{2^2}-\frac{1}{100^2}\)

   =\(\frac{2599}{10000}< \frac{2500}{10000}=\frac{1}{4}\)

     => B<\(\frac{1}{4}\)

9 tháng 5 2018

Bn ơi ! 1/22 - 1/100là 2499/10000 chứ bn