Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)
\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)
\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)
Lời giải:
Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$
$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$
$\Rightarrow 3A=4^{2022}-1$
$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$
Ta có đpcm.
Đặt \(D=1+4+...+4^{2019}\)
\(\Leftrightarrow4D=4+4^2+...+4^{2020}\)
\(\Leftrightarrow D=\dfrac{4^{2020}-1}{3}\)
\(C=75\cdot D+25\)
\(=25\left(4^{2020}-1\right)+25=25\cdot4\cdot4^{2019}⋮100\)
B=(3+3^2)+3^2(3+3^2)+...+3^98(3+3^2)
=12(1+3^2+...+3^98) chia hết cho 12
=> B = 75.41993 + 75.41992 + ... + 75.4 + 75 + 25
= 25.3.4.41992 + 25.3.4.41991 + ... + 25.3.4 + 100
= 100.3.41992 + 100.3.41991 + ... + 100.3 + 100
= 100 ( 41992 + 41991 + .... + 3 + 1 ) CHIA HẾT CHO 100
vậy cho mình hỏi Đinh Đức Hùng, số 41993 sẽ sao ạ ?