Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=4^{1010}\cdot125^{673}\\ =4^{337}\cdot4^{673}\cdot125^{673}\\ =4^{337}\cdot500^{673}\\=2^{674} \cdot500^{673}\\ =2\cdot2^{673}\cdot500^{673}\\ =2\cdot1000^{673}=200000...000\left(Có.2019.số.0\right)\\ Vậy.tổng.chữ.số.là=2+0\cdot2019=0\)
a. Ta thấy từ 1 đến 25 có các số chia hết cho 5 là 5, 10, 15, 20 và 25.
Do 25 = 5.5 nên số lần xuất hiện của 5 trong tích trên là 6 lần. Vậy trong phân tích thừa số nguyên tố của P bao gồm 6 chữ số 5.
b. Ta thấy trong tích trên số lần xuất hiện số 2 nhiều hơn số lần xuất hiện số 5. Lại có số chia hết cho 10 thì thia hết cho cả 2 và 5. Như vậy số lần xuất hiện số 10 trong tích trên là 6 lần, hay số P có tận cùng là 6 chữ số 0.
1)
a Ta có : 12534 = 125 .125 . 125 ... .125 (34 thừa số 125) <=> 125.`125.125 = ...5
Vì 34 : 3 = 11 dư 1
nên 12534 = 11 nhóm tận cùng là 5 và dư 1 thưà số 125
= .....5 x125 =...5
Ta có : 12635 = 126 .126 . 126 ... .126 (34 thừa số 126) <=> 126.`126.126 = ...6
Vì 35 : 3 = 11 dư 1
nên 12635 = 11 nhóm tận cùng là 5 và dư 1 thưà số 126
= .....6 x126 =...6
=> Tích 12534 .12635 = tận cùng là ..6 x ...5 = ...0
b Ta có : 20072006 = 2007 .2007 . 2007 ... .2007 ( 2006 thừa số 2007) <=> 2007.`2007.2007 = ...3
Vì 2006 : 3 = 668 dư 2
nên 20172016 = 668 nhóm tận cùng là 3 và dư 2 thưà số 2017
= .....3 . 2007.2007 =..7
Ta có : 20062007 = 2006 .2006 . 2006 ... .2006 ( 2007 thừa số 2006) <=> 2006.`2006.2006 = ...6
Vì 2007 : 3 = 669
nên 20172016 = 669 nhóm tận cùng là 6
= .....6
=> Tích 20062007 .20072006 = tận cùng là ..6 x ...7= ...2
c)
c Ta có : 19981998 = 1998 .1998 . 1998 ... .1998 ( 1998 thừa số 1998) <=> 1998.`1998.1998 = ...2
Vì 1998 : 3 = 666
nên 19981998 = 666 nhóm tận cùng là 2
= .....2
Ta có : 19991999 = 1999 .1999 . 1999 ... .1999 ( 1999 thừa số 1999) <=> 1999.`1999.1999 = ..9
Vì 1999 : 3 = 666 dư 1
nên 19991999 = 666 nhóm tận cùng là 6 dư 1 thừa số 1999
= .....9 . 1999 = ...1
=> Tích 19991999 .19981998 = tận cùng là ..2 . ...1 = ....2
a) Gọi số hàng dọc xếp thành nhiều nhất là \(a\left(a\inℕ^∗\right)\)
Theo đề bài ta có:
\(300⋮a\)
\(276⋮a\)
\(252⋮a\)
Vì a lớn nhất \(\Rightarrow\) \(a\inƯCLN\left(300;276;252\right)\)
\(300=2^2.3.5^2\)
\(276=2^2.2.23\)
\(252=2^2.3^2.7\)
\(ƯCLN\left(300;276;252\right)=2^2.3=12\)
Vậy có thể xếp thành nhiều nhất 12 hàng dọc để mỗi khối không ai lẻ hàng.
Khi đó khối 6 có số hàng ngang là:
\(300\div12=25\) ( hàng )
Khi đó khối 7 có số hàng ngang là:
\(276\div12=23\) ( hàng )
Khi đó khối 8 có số hàng ngang là:
\(252\div12=21\) ( hàng )
b) Gọi số học sinh của trường đó là \(x\left(x\inℕ^∗,x>900\right)\)
Vì xếp hàng 3, hàng 4, hàng 5 đều đủ, ta có:
\(x⋮3\)
\(x⋮4\)
\(x⋮5\)
Vì x nhỏ nhất \(\Rightarrow\) \(x\in BCLN\left(3;4;5\right)\)
\(3=3\)
\(4=2^2\)
\(5=5\)
\(\Rightarrow\)\(BCLN\left(3;4;5\right)=2^2.3.5=60\)
\(\Rightarrow\)\(BC\left(3;4;5\right)=B\left(60\right)=\left\{0;60;120;180;240;300;360;400;...;780;900;960;1020;...\right\}\)
Vì \(x>900\) và x là một số có 3 chữ số \(\Rightarrow\) \(x\in960,x=960\)
Vậy trường đó có \(960\) học sinh