Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))
Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)
b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)
Bài 4:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)
=>9a-6-4b-2=30 và 3a+6+6b-2=-20
=>9a-4b=38 và 3a+6b=-20+2-6=-24
=>a=2; b=-5
Câu 1:
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x+y\right)\left(x-y\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)=5\left(x+y\right)\left(x-y\right)^2\)
\(\Leftrightarrow x^2+y^2=5\left(x-y\right)^2\)
\(\Leftrightarrow2x^2-5xy+2y^2=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\x=2y\end{matrix}\right.\)
TH1: \(y=2x\Rightarrow3x\left(x^2+4x^2\right)=15\Leftrightarrow x^3=1\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
TH2: \(x=2y\Rightarrow3y\left(4y^2+y^2\right)=15\Rightarrow y^3=1\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Câu 2:
\(\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
\(\Leftrightarrow x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
\(\Rightarrow\left(y+3\right)^2+2y^2=y+3-4y\)
\(\Leftrightarrow y^2+3y+2=0\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=2\\y=-2\Rightarrow x=1\end{matrix}\right.\)
a)...........................
b)\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+x^2y+\dfrac{y}{4}+y^2+x^2y^2+\dfrac{1}{4}+\dfrac{3y}{4}}{x^2y^2+1+y^2-x^2y-y+x^2}\)
\(\Leftrightarrow A=\dfrac{\dfrac{x^2}{4}+\dfrac{1}{4}+y+x^2y+y^2+x^2y^2}{x^2\left(y^2-y+1\right)+\left(y^2-y+1\right)}\)
\(\Leftrightarrow A=\dfrac{\dfrac{\left(x^2+1\right)}{4}+y\left(x^2+1\right)+y^2\left(x^2+1\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}\)
\(\Leftrightarrow A=\dfrac{\left(x^2+1\right)\left(\dfrac{1}{4}+y+y^2\right)}{\left(y^2-y+1\right)\left(x^2+1\right)}=\dfrac{4y^2+4y+1}{4\left(y^2-y+1\right)}\)(không phụ vào x)
\(\Rightarrowđpcm\)
c) Bạn tự làm đi tới đây dễ rồi
\(A=f\left(x,y\right)\)
Coi y là tham số \(\rightarrow A=f\left(x\right)\)
\(A=f\left(x\right)=2x^2-4xy+5y^2-6x-2y+13\)
\(f'\left(x\right)=4x-4y-6\)
Coi x là tham số \(\rightarrow A=f\left(y\right)\)
\(f'\left(y\right)=10y-4x-2\)
\(f'\left(x\right)=f'\left(y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{17}{6}\\y=\frac{4}{3}\end{matrix}\right.\)
\(\Rightarrow Min_A=f\left(\frac{17}{6};\frac{4}{3}\right)=\frac{19}{6}\)
Chơi cả cực trị hàm nhiều biến cho lớp 9 luôn :D
Cứ nhân tung biến đổi thôi:
\(A=x^2-4xy+4y^2+x^2-6x+9+y^2-2y+1+3\)
\(A=2x^2-4xy+5y^2-6x-2y-13\)
\(A=2\left(x^2+y^2+\frac{9}{4}-2xy-3x+3y\right)+3\left(y^2-\frac{8}{3}y+\frac{16}{9}\right)+\frac{19}{6}\)
\(A=2\left(x-y-\frac{3}{2}\right)^2+3\left(y-\frac{4}{3}\right)^2+\frac{19}{6}\ge\frac{19}{6}\)
\(\Rightarrow A_{min}=\frac{19}{6}\) khi \(\left\{{}\begin{matrix}x=y+\frac{3}{2}=\frac{17}{6}\\y=\frac{4}{3}\end{matrix}\right.\)
Lời giải:
Ta có:
\(A=(x-2y)^2+(x-3)^2+(y-1)^2+3\)
\(=x^2+4y^2-4xy+x^2-6x+9+y^2-2y+1+3\)
\(=2x^2+5y^2-4xy-6x-2y+13\)
\(=2(x^2-2xy+y^2)-6x-2y+3y^2+13\)
\(=2(x-y)^2-2.3(x-y)-8y+3y^2+13\)
\(=2[(x-y)^2-3(x-y)+\frac{3^2}{2^2}]+3(y^2-\frac{8}{3}y+\frac{4^2}{3^2})+\frac{19}{6}\)
\(=2(x-y-\frac{3}{2})^2+3(y-\frac{4}{3})^2+\frac{19}{6}\)
\(\geq 0+0+\frac{19}{6}=\frac{19}{6}\)
Vậy GTNN của $A$ là \(\frac{19}{6}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-y-\frac{3}{2}=0\\ y-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow x=\frac{17}{6}; y=\frac{4}{3}\)