Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
a: \(=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\)
=1/2-1/380
=179/380
b: \(=\dfrac{1}{1\cdot3}-\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot5}-\dfrac{1}{5\cdot7}+...+\dfrac{1}{21\cdot23}-\dfrac{1}{23\cdot25}\)
\(=\dfrac{1}{3}-\dfrac{1}{575}=\dfrac{572}{1725}\)
c: \(=1+\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}-\dfrac{1}{20}-\dfrac{1}{21}\)
=1-1/21
=20/21
d: \(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)\cdot...\cdot\left(1-\dfrac{1}{121}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{10}{11}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{12}{11}\)
\(=\dfrac{2}{11}\cdot\dfrac{12}{2}=\dfrac{12}{11}\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{2014.2015.2016}\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2014.2015}+\dfrac{1}{2015.2016}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2015.2016}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2015.2016}\right)\)
\(A=\dfrac{1}{4}-\dfrac{1}{2.2015.2016}< \dfrac{1}{4}\)
\(=>A< \dfrac{1}{4}\)
Chúc bn học tốt
\(S=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{2009.2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{2009.2010}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2010.2011}\)
\(=\dfrac{1}{2}-\dfrac{1}{4042110}< \dfrac{1}{2}\)
\(\Rightarrow\) \(S< P\)
Vậy \(S< P\)
a) Ta có:
3A= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\left(1\right)\)
A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\left(2\right)\)
Lấy (1) - (2) ta được:
1-\(\dfrac{1}{3^{100}}\)
b) Ta xét:
\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3},...,\dfrac{1}{37.38}-\dfrac{1}{38.39}=\dfrac{2}{37.38.39}\)
Ta có:
2B=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+..+\dfrac{2}{37.38.39}\)
=\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+..+\left(\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
=\(\dfrac{1}{1.2}-\dfrac{1}{38.39}=\dfrac{740}{38.39}=\dfrac{370}{741}\)
Vậy \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+..+\dfrac{2}{37.38.39}\)
=\(\dfrac{370}{741}\)
Nếu bn cảm thấy mk đúng tick cho mk nhé!
Gọi biểu thức là \(A\). Ta có :
\(A=\dfrac{3}{1.2.3}+\dfrac{5}{2.3.4}+\dfrac{7}{3.4.5}+...+\dfrac{2017}{1008.1009.1010}\)
\(A=\left(\dfrac{1.2}{1.2.3}+\dfrac{2.2}{2.3.4}+\dfrac{3.2}{3.4.5}+...+\dfrac{1008.2}{1008.1009.1010}\right)+\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{1008.1009.1010}\right)\)\(A=\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{1009.1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{1008.1009}-\dfrac{1}{1009.1010}\right)\)
\(A=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{1009}-\dfrac{1}{1010}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{1009.1010}\right)\)
\(A< 2.\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{1}{2}=1+\dfrac{1}{4}=\dfrac{5}{4}\)
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)