K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Trả lời:

Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=a.b\)

Khi đó: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+a.b}{b^2+a.b}\)

\(=\)\(\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

13 tháng 10 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
                                         \(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
                                          \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

a) Ta có: C=A+B

\(=x^2-2y^2+xy+1+x^2+y^2-x^2y^2-1\)

\(=2x^2-y^2-x^2y^2+xy\)

b) Ta có: C+A=B

nên C=B-A

\(=x^2+y^2-x^2y^2-1-x^2+2y^2-xy-1\)

\(=3y^2-x^2y^2-xy-2\)

8 tháng 11 2019

Ta có \(\frac{a}{c}=\frac{c}{b}\)=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+b^2}{c^2+d^2}\)             (1)\

Ta lại có : \(\frac{a^2}{c^2}=\frac{a}{c}.\left(\frac{a}{c}\right)=\frac{a}{c}.\left(\frac{c}{b}\right)=\frac{a}{b}\)   ( vì \(\frac{a}{c}=\frac{c}{b}\))             (2)

Từ 1,2 => đpcm

Ta có:

\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a}{b}=c^2\)

Ta lại có: 

\(\frac{a^2+c^2}{b^2+c^2}\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)(đpcm)