K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

Ta có :

 \(ac=b^2\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\\ ab=c^2\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{a}\left(2\right)\) 

Từ (1) và (2) suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)

                                Và \(a+b+c\ne0\)

Áp dụng tính chất dãy tỉ số bằng ta có :

   \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\\ \Rightarrow a=b=c\)

  Ta có :

\(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=\dfrac{b^{3333}}{b^{1111}.b^{2222}}=\dfrac{b^{3333}}{b^{3333}}=1\)

    Vậy \(\dfrac{b^{3333}}{a^{1111}.c^{2222}}=1\)

 

21 tháng 7 2021

Bạn ơi \(\dfrac{b^{3333}}{a^{1111}.c^{2222}}\) chứ ạ !

5 tháng 11 2017

\(\hept{\begin{cases}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{c}{a}=\frac{b}{c}\end{cases}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}}\)

Theo t/c cuae dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) (vì a+b+c khác 0)

=> a/b = 1 => a = b

b/c = 1 => b = c

=> a=b=c

=> \(\frac{b^{3333}}{a^{1111}.c^{2222}}=\frac{b^{3333}}{b^{1111}.b^{2222}}=1\)

7 tháng 11 2017

cho ac=b2;ab=c2,a+b+ckhác 0 và a,b,clà các số khác 0.

tính;b3333a1111.c2222 

Toán lớp 7

{

ac=b2⇒ab =bc 
ab=c2⇒ca =bc 

⇒ab =bc =ca 

Theo t/c cuae dãy tỉ số bằng nhau ta có:

ab =bc =ca =a+b+cb+c+a =1 (vì a+b+c khác 0)

=> a/b = 1 => a = b

b/c = 1 => b = c

=> a=b=c

=> b3333a1111.c2222 =b3333b1111.b2222 =1

18 tháng 12 2016

1)Ta có:\(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c},ab=c^2\Rightarrow\frac{c}{a}=\frac{b}{c}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{a}=\frac{b}{c}=\frac{a+c+b}{b+a+c}=1\)(T/C...)

\(\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{b^{333}}{a^{111}\cdot c^{222}}=\frac{b^{333}}{b^{111}\cdot b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c 

b, Áp dung TCDTSBN ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y = z

Vậy \(\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c, ac = b2 => \(\frac{a}{b}=\frac{b}{c}\left(1\right)\)

ab = c2 => \(\frac{b}{c}=\frac{c}{a}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a = b = c

Vậy \(\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

13 tháng 7 2017

a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

Vậy a = b ; a = c ; c = a => a=b=c

b, Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=> x = y; y = z; z = x => x = y = z

\(\Rightarrow\frac{x^{333}.y^{666}}{z^{999}}=\frac{z^{333}.z^{666}}{z^{999}}=\frac{z^{333+666}}{z^{999}}=\frac{z^{999}}{z^{999}}=1\)

c,

Theo đề bài:

ac = bb <=> bb/a = c

ab = cc <=> ab/c = c

=> bb/a = ab/c

=> bbc = aab 

=> bc = ab

Mà cc = ab => cc = bc => b = c

ac/b = b

cc/a = b

=> ac/b = cc/a

=> aac = bcc

=> aa = bc

Mà bc = cc => aa = cc => a = c

=> a = b = c

\(\Rightarrow\frac{b^{333}}{c^{111}.a^{222}}=\frac{b^{333}}{b^{111}.b^{222}}=\frac{b^{333}}{b^{333}}=1\)

17 tháng 12 2016

Ta co a.c = b=b.b

Suy ra a/b =b/c (1)

Ta co a.b=c2=c.c

Suy ra a/c=c/b suy ra c/a = b/c (2)

Tu (1),(2) suy ra a/b=b/c=c/a

Ap dung tinh chat cua day ti so bang nhau ta co

a/b=b/c=c/a=a+b+c/b+c+a=1

Khi do a/b=1 suy ra a=b

b/c=1 suy ra b=c

a/c=1 suy ra a=c

Suy ra a=b=c (3)

Ta co M=b333/a111.c222

Thay (3) vao bieu thuc M ta co

M=a333/a111.a222

=a333/a111+222

=a333/a333 =1

Vay M=1

12 tháng 12 2021

giúp tôi vs, tôi đang cần gấp

12 tháng 12 2021

tra mạng ko có ???

17 tháng 10 2017

Từ ab/(a+b)=bc/(b+c). Nhân chéo suy ra a=c

Chứng minh tương tự suy ra  a=b=c

Thay hết thành a vào M tính ra M=1