Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
Tương tự, ta có:
\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(M=\sqrt{\left(a+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(b+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}+\sqrt{\left(c+\frac{1}{2}\right)^2+\left(\frac{\sqrt{15}}{2}\right)^2}\)
\(M\ge\sqrt{\left(a+b+c+\frac{3}{2}\right)^2+\left(\frac{3\sqrt{15}}{2}\right)^2}=3\sqrt{6}\)
\(M_{min}=3\sqrt{6}\) khi \(a=b=c=1\)
\(M_{max}\) ko tồn tại
Ta có bất đẳng thức phụ sau (bđt Mincopski)
\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\left(x;y;z;t\inℝ\right)\)
Thật vậy :
\(bđt\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)
\(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)
*Nếu xz + yt < 0 thì bđt hiển nhiên đúng
*Nếu xz + yt > 0 thì bđt trở thành
\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)
\(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)
\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(ĐÚng)
Vậy bđt được chứng minh
Áp dụng bđt trên 2 lần ta được
\(P\ge\sqrt{\left(5+5\right)^2+\left(a^2+b^2\right)^2}+\sqrt{25+c^4}\)
\(\ge\sqrt{\left(5+5+5\right)^2+\left(a^2+b^2+c^2\right)^2}\)
\(=\sqrt{225+\left(a^2+b^2+c^2\right)^2}\)
Bài toán quay về tìm \(min\left(a^2+b^2+c^2\right)\)biết \(2\left(a+b+c\right)+ab+bc+ca=18\)
Ta có bđt phụ sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)(Tự chứng minh bằng biến đổi tương đương nhé)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Đặt \(3\left(a^2+b^2+c^2\right)=t\left(t\ge0\right)\)
\(\Rightarrow a+b+c\le\sqrt{3t}\)
Lại có bđt phụ sau \(ab+bc+ca\le a^2+b^2+c^2=\frac{t}{3}\)
Tóm lại ta thu được 2 bđt sau \(\hept{\begin{cases}a+b+c\le\sqrt{3t}\\ab+bc+ca\le\frac{t}{3}\end{cases}}\)
Ta có \(18=2\left(a+b+c\right)+ab+bc+ca\le2\sqrt{3t}+\frac{t}{3}\)
\(\Leftrightarrow\frac{t}{3}+2\sqrt{3t}-18\ge0\)
\(\Leftrightarrow t+6\sqrt{3t}-54\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{t}\le-9-3\sqrt{3}\left(Loa_.i\cdot do\cdot\sqrt{t}\ge0\right)\\\sqrt{t}\ge9-3\sqrt{3}\left(Tm\right)\end{cases}}\)
Có \(\sqrt{t}\ge9-3\sqrt{3}\)
\(\Leftrightarrow\sqrt{3\left(a^2+b^2+c^2\right)}\ge9-3\sqrt{3}\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge108-54\sqrt{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge36-18\sqrt{3}\)
Quay trở lại bài toán \(P\ge\sqrt{225+\left(a^2+b^2+c^2\right)^2}\ge\sqrt{225+\left(36-18\sqrt{3}\right)^2}\)
Dấu "=" xảy ra tại a = b = c
P/S: sai đâu thì thôi nha :v a lười ktra lại lắm
Câu 3. Dự đoán dấu "=" khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Dùng phương pháp chọn điểm rơi thôi :)
LG
Áp dụng bđt Cô-si được \(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow1\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{3}\ge\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\frac{1}{27}\ge a^2b^2c^2\)
\(\Rightarrow\frac{1}{\sqrt{27}}\ge abc\)
Khi đó :\(B=a+b+c+\frac{1}{abc}\)
\(=a+b+c+\frac{1}{9abc}+\frac{8}{9abc}\)
\(\ge4\sqrt[4]{abc.\frac{1}{9abc}}+\frac{8}{9.\frac{1}{\sqrt{27}}}\)
\(=4\sqrt[4]{\frac{1}{9}}+\frac{8\sqrt{27}}{9}=\frac{4}{\sqrt[4]{9}}+\frac{8}{\sqrt{3}}=\frac{4}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{12}{\sqrt{3}}=4\sqrt{3}\)
Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Vậy .........
2, \(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
\(A=\left[\frac{a^2}{b+c}+\frac{\left(b+c\right)}{4}\right]+\left[\frac{b^2}{a+c}+\frac{\left(a+c\right)}{4}\right]+\left[\frac{c^2}{a+b}+\frac{\left(a+b\right)}{4}\right]-\frac{\left(a+b+c\right)}{2}\)
Áp dụng BĐT AM-GM ta có:
\(A\ge2.\sqrt{\frac{a^2}{4}}+2.\sqrt{\frac{b^2}{4}}+2.\sqrt{\frac{c^2}{4}}-\frac{\left(a+b+c\right)}{2}\)
\(A\ge a+b+c-\frac{6}{2}\)
\(A\ge6-3\)
\(A\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(\frac{a^2}{b+c}=\frac{b+c}{4}\Leftrightarrow4a^2=\left(b+c\right)^2\Leftrightarrow2a=b+c\)(1)
\(\frac{b^2}{a+c}=\frac{a+c}{4}\Leftrightarrow4b^2=\left(a+c\right)^2\Leftrightarrow2b=a+c\)(2)
\(\frac{c^2}{a+b}=\frac{a+b}{4}\Leftrightarrow4c^2=\left(a+b\right)^2\Leftrightarrow2c=a+b\)(3)
Lấy \(\left(1\right)-\left(3\right)\)ta có:
\(2a-2c=c+b-a-b=c-a\)
\(\Rightarrow2a-2c-c+a=0\)
\(\Leftrightarrow3.\left(a-c\right)=0\)
\(\Leftrightarrow a-c=0\Leftrightarrow a=c\)
Chứng minh tương tự ta có: \(\hept{\begin{cases}b=c\\a=b\end{cases}}\)
\(\Rightarrow a=b=c=2\)
Vậy \(A_{min}=3\Leftrightarrow a=b=c=2\)
hả?
bài để thi hok kì I đó hả? đúng khó *_*
mk sẽ ghi lại để sau này mk hok
Ta có:
\(a+b+c=4\)
\(\Rightarrow\) \(a< 4\)
\(\Rightarrow\) \(a^4< 4a^3\) (do \(a>0\) nên \(a^3>0\) )
Do đó, \(a^3>\frac{a^4}{4}\) hay nói cách khác, \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\) \(\left(1\right)\)
Từ đó, ta cũng tương tự thiết lập được: \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\) \(\left(2\right)\) và \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\) \(\left(3\right)\)
Cộng từng vế các bđt \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right)\) ta có:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)