K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Câu 1:

Theo bài ra ta có:

\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)

\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)

\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)

\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)

\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)

\(\Rightarrow a+b-ab=1\)

\(\Leftrightarrow a+b-ab-1=0\)

\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)

=> a^20 + b^20 = 2

:)) đừng ném đá nhá

7 tháng 12 2017

Giải đúng quá nhỉ?bn giỏi toán quá hihi

23 tháng 11 2017

Đặt: \(L=\dfrac{3\left(a+2\right)}{a^3+a^2+a+1}+\dfrac{2a^2-a-10}{a^3-a^2+a-1}\)

Ta có:

\(\dfrac{3\left(a+2\right)}{a^3+a^2+a+1}=\dfrac{3\left(a+2\right)}{a^2\left(a+1\right)+1\left(a+1\right)}=\dfrac{3\left(a+2\right)}{\left(a^2+1\right)\left(a+1\right)}\)

\(\dfrac{2a^2-a-10}{a^3-a^2+a-1}=\dfrac{a\left(2a-1\right)-10}{a^2\left(a-1\right)+1\left(a-1\right)}=\dfrac{a\left(2a-1\right)-10}{\left(a^2+1\right)\left(a-1\right)}\)

Như vậy \(L=\dfrac{3\left(a+2\right)}{\left(a^2+1\right)\left(a+1\right)}+\dfrac{a\left(2a-1\right)-10}{\left(a^2+1\right)\left(a-1\right)}\)

Đặt:

\(N=\dfrac{5}{a^2+1}+\dfrac{3}{2a+2}-\dfrac{3}{2a-2}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{3\left(2a-2\right)}{\left(2a+2\right)\left(2a-2\right)}-\dfrac{3\left(2a+2\right)}{\left(2a+2\right)\left(2a-2\right)}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{6a-6}{4a^2-4}-\dfrac{6a+6}{4a^2-4}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{6a-6-6a-6}{4a^2-4}=\dfrac{5}{a^2+1}+\dfrac{-12}{4a^2-4}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{-12}{4\left(a^2-1\right)}=\dfrac{5}{a^2+1}+\dfrac{-3}{a^2-1}\)

\(N=\dfrac{5\left(a^2-1\right)}{\left(a^2+1\right)\left(a^2-1\right)}+\dfrac{-3\left(a^2+1\right)}{\left(a^2-1\right)\left(a^2+1\right)}\)

\(N=\dfrac{5a^2-5-3a^2-3}{a^4-1}=\dfrac{2a^2-8}{a^4-1}\)

Thay M với N vào A Mình cạn sức rồi bucminhbucminhbucminh

24 tháng 11 2017

Cảm ơn nhiều!!!!

11 tháng 8 2018

\(1a.A=\dfrac{x}{x+1}-\dfrac{3-3x}{x^2-x+1}+\dfrac{x+4}{x^3+1}=\dfrac{x\left(x^2-x+1\right)-3\left(1-x^2\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+x^2+x^2+x+x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+x+1}{x^2-x+1}\left(x\ne-1\right)\)

\(b.A=\dfrac{x^2+x+1}{x^2-x+1}=\dfrac{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+1-\dfrac{1}{4}}{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+1-\dfrac{1}{4}}=\dfrac{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\left(x\ne-1\right)\)

\(2a.M=\left(\dfrac{x}{x^2-4}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)=\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right]:\dfrac{x^2-4+10-x^2}{x+2}=\dfrac{6}{\left(2-x\right)\left(x+2\right)}.\dfrac{x+2}{6}=\dfrac{1}{2-x}\left(x\ne\pm2\right)\)

\(b.Để:M\in Z\Leftrightarrow\dfrac{1}{2-x}\in Z\Leftrightarrow2-x\in\left\{\pm1\right\}\)

\(\oplus2-x=1\Leftrightarrow x=1\left(TM\right)\)

\(\oplus2-x=-1\Leftrightarrow x=3\left(TM\right)\)

\(c.\circledast x=\dfrac{1}{2}\left(TM\right)\) , ta có :

\(M=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)

\(\circledast x=2\left(KTM\right)\) , giá trị của M không xác định tại x = 2

5 tháng 8 2018

<

27 tháng 6 2017

câu b) mình có cách giải khác nè

\(N=\dfrac{3655}{11676}=\dfrac{1}{\dfrac{11676}{3655}}=\dfrac{1}{3+\dfrac{711}{3655}}=\dfrac{1}{3+\dfrac{1}{\dfrac{3655}{711}}}=\dfrac{1}{3+\dfrac{1}{5+\dfrac{100}{711}}}=\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{7+\dfrac{11}{100}}}}=\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{7+\dfrac{1}{9+\dfrac{1}{11}}}}}\)

theo pp cân bằng hệ số ta tìm đc a=9 ; b=11

27 tháng 6 2017

a)

\(M=\dfrac{1}{7+\dfrac{1}{5+\dfrac{1}{3+\dfrac{1}{2}}}}+\dfrac{1}{9+\dfrac{1}{8+\dfrac{1}{7+\dfrac{1}{6}}}}\)

\(=\dfrac{1}{7+\dfrac{1}{5+\dfrac{1}{\dfrac{7}{2}}}}+\dfrac{1}{9+\dfrac{1}{8+\dfrac{1}{\dfrac{43}{6}}}}\)

\(=\dfrac{1}{7+\dfrac{1}{5+\dfrac{2}{7}}}+\dfrac{1}{9+\dfrac{1}{8+\dfrac{6}{43}}}\)

\(=\dfrac{1}{7+\dfrac{1}{\dfrac{37}{7}}}+\dfrac{1}{9+\dfrac{1}{\dfrac{350}{43}}}\)

\(=\dfrac{1}{7+\dfrac{7}{37}}+\dfrac{1}{9+\dfrac{43}{350}}\)

\(=\dfrac{1}{\dfrac{266}{37}}+\dfrac{1}{\dfrac{3193}{350}}\)

\(=\dfrac{37}{266}+\dfrac{350}{3193}\)

\(=\dfrac{211241}{849338}\)

b)

\(N=\dfrac{3655}{11676}\Leftrightarrow\dfrac{1}{3+\dfrac{1}{5+\dfrac{1}{7+\dfrac{1}{a+\dfrac{1}{b}}}}}=\dfrac{3655}{11676}\)

\(\Leftrightarrow-\dfrac{36ab+36+5b}{115ab+115+16b}=\dfrac{3655}{11676}\)

dễ rồi lm tiếp nhé