K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

Đầu tiên chứng minh. Với mọi số n lẻ thì: \(n^5-n⋮240\)

Vì n lẻ nên ta chứng minh: \(A=\left(2k+1\right)^5-\left(2k+1\right)⋮240\)

Ta có:

\(\left(2k+1\right)^5-\left(2k+1\right)=8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)\)

Chứng minh nó chia hết cho 16.

Vì \(k\left(k+1\right)⋮2\)

\(8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)⋮16\)

Chứng minh nó chia hết cho 3:

Với \(k=3x\) thì \(A⋮3\)

Với \(k=3x+1\) thì \(2k+1=2\left(3x+1\right)+1=6x+3⋮3\)

Với \(k=3x+2\)thì \(k+1=3x+2+1=3x+3⋮3\)

\(\Rightarrow A⋮3\)

Chứng minh tương tự ta có được \(A⋮5\)

Vậy \(A⋮\left(16.3.5=240\right)\)

Quay lại bài toán ta có

\(a^5+b^5+c^5+d^5-a-b-c-d\)

\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)⋮240\)

Từ đây ta có ĐPCM

24 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 12 2018

Khó nhỉ :))

\(Ta có: a+b+c=0 ⇔(a+b)^5=(−c)^5 ⇔a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=−c5 \)

\(⇔a^5+b^5+c^5=−5ab(a^3+2a^2b+2ab^2+b^3)\)

\(⇔a^5+b^5+c^5=−5ab[(a+b)(a^2−ab+b^2)+2ab(a+b)]\)

\(⇔2(a^5+b^5+c^5)=5abc[a^2+b^2+(a^2+2ab+b^2)]\)

\(⇔2(a^5+b^5+c^5)=5abc(a^2+b^2+c^2)\)(đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

Có $4$ số $a,b,c,d$ và $3$ số dư có thể xảy ra khi chia một số cho $3$ là $0,1,2$

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất \(\left [ \frac{4}{3} \right ]+1=2\) số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là \(a,b\Rightarrow a-b\vdots 3\)

\(\Rightarrow (b-a)(c-a)(d-a)(d-c)(d-b)(c-b)\vdots 3\)

Mặt khác:

Trong 4 số $a,b,c,d$

Giả sử tồn tại hai số có cùng số dư khi chia cho $4$ là $a,b$

\(\Rightarrow a-b\vdots 4\Rightarrow (b-a)(c-a)(d-a)(d-c)(d-b)(c-b)\vdots 4\)

Nếu $a,b,c,d$ không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử $a,b,c,d$ có số dư khi chia cho $4$ lần lượt là $0,1,2,3$

\(\Rightarrow c-a\vdots 2; d-b\vdots 2\)

\(\Rightarrow (b-a)(c-a)(d-a)(d-c)(d-b)(c-b)\vdots 4\)

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

Ta có đpcm,

15 tháng 1 2019

Lời giải:

Có 44 số a,b,c,da,b,c,d và 33 số dư có thể xảy ra khi chia một số cho 33 là 0,1,20,1,2

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [43]+1=2[43]+1=2 số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,da,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 44 là a,ba,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,da,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,da,b,c,d có số dư khi chia cho 44 lần lượt là 0,1,2,30,1,2,3

⇒c−a⋮2;d−b⋮2⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

15 tháng 1 2019

Cho 4 số nguyên phân biệt a,b,c,d. Chứng minh rằng : (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12

 Giải

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3

⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

Ta có đpcm,

9 tháng 2 2020

Lời giải:

Có 44 số a,b,c,da,b,c,d và 33 số dư có thể xảy ra khi chia một số cho 33 là 0,1,20,1,2

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [43]+1=2[43]+1=2 số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,da,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 44 là a,ba,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,da,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,da,b,c,d có số dư khi chia cho 44 lần lượt là 0,1,2,30,1,2,3

⇒c−a⋮2;d−b⋮2⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

13 tháng 2 2022

cho minh hỏi bài này với ah.