Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.Từ A và B kẻ AH,BK vuông góc với CD
AB+CD=40*
ABCD là ht cân=>DH=CK=>DK=AB+CK=20cm
=>▲ADH cân tại D
mà góc D =60* nên ▲ADH đều =>AH là đường cao đồng thời là đường trung tuyến =>DH=HK=KC=10cm=>CD=30cm
Kẻ các đường cao \(AH,BK\perp CD.\) Tam giác \(\Delta AHD\) là tam giác vuông có góc D bằng 60 nên cạnh DH đối diện góc 30 độ bằng 1/2 cạnh huyền, suy ra \(HD=\frac{1}{2}AD=10\left(\text{cm}\right).\) Tương tự, \(CK=10\left(\text{cm}\right).\) Vì ABKH là hình bình hành nên \(AB=HK\to AB+CD=AB+CK+KH+HD=2AB+10+10=2AB+20\)
\(\to2AB+20=40\to AB=10\left(\text{cm}\right).\) Từ đây ta suy ra \(CD=40-10=30\left(\text{cm}\right).\)