Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
a)
xét tam giác ABK và tam giác DCK có:
KB=KB(gt)
KA=KD(gt)
BKA=DKC(2 góc đđ)
suy ra tam giác ABK=DCK(c.g.c)
suy ra BAK=DCK
suy ra AB//CD
b)
theo câu a, ta có tam giác ABK=DCK(c.g.c0
suy ra AB=DC
ta có: AB//DC mà BAK= 90 độ suy ra DCK=90
xét tam giác ABH và CDH có:
AB=CD(cmt)
HA=HC(gt)
BAH=DCH=90
suy ra tam giác ABH=CDH(c.g.c)
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
a: BC=5cm
b: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
=>góc ABM=góc CDM
=>AB//CD
hay CD vuông góc với AC
c: Xét ΔCDB có
CMlà đường trung tuyến
BN là đường trung tuyến
CM cắt BN tạiH
Do đó:H là trọng tâm
=>CH=2/3CM=2/3x2=4/3(cm)