K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

Do a,b,c là độ dài 3 cạnh tam giác nên \(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự:\(b^2< bc+ca;c^2< ca+cb\)

Cộng vế theo vế ta có điều cần chứng minh.

14 tháng 7 2015

Biến đổi vế trái ta có 

(a+b+c)^2 = (a+b + c)( a+b+c) = a(a+b + c) + b(a+b+c ) + c (a+b+c )

                                              = a^2 + ab +ac + ab + b^2 + bc + ac + bc + c^2 

                                               = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac => ĐPCM

vì a,b,c là số đo 3 cạnh của tam giác nên:

a+b>c( bđt tg)

\(\Rightarrow\hept{\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ac+ab>a^2\end{cases}}\)

Cộng 3 vế với nhau, ta có:

\(2ab+2bc+2ac>a^2+b^2+c^2\)

hay \(a^2+b^2+c^2< 2ab+2bc+2ac\)(đpcm)

3 tháng 9 2019

Biến đổi tương đương ta được (a-b)2+c2<2ac+2bc

Vì a,b,c là độ dài ba cạnh của một tam giác nên c<a+b

=>(a-b)2+c2<(a-b)2+(a+b)2=2a2+2b2

Do đó ta chỉ cần chứng minh 2a2+2b2\(\le\)2ac+2bc(*)

Bằng việc giả sử c=max{a;b;c} ta có ngay (*) đúng

Vậy ta có điều phải chứng minh

NV
8 tháng 6 2020

\(3x^2+2xy+3y^2=\left(x+y\right)^2+2\left(x^2+y^2\right)\ge\left(x+y\right)^2+\left(x+y\right)^2=2\left(x+y\right)^2\)

\(\Rightarrow A\ge\sqrt{2}\left(a+b\right)+\sqrt{2}\left(b+c\right)+\sqrt{2}\left(c+a\right)\)

\(A\ge2\sqrt{2}\left(a+b+c\right)\ge\frac{2\sqrt{2}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\sqrt{2}\)

\(A_{min}=6\sqrt{2}\) khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
11 tháng 12 2021

Lời giải:
Áp dụng BĐT trong tam giác ta có:
$x+y>z$

$\Rightarrow xz+yz> z^2$

Tương tự: $xy+yz\geq y^2; xy+xz\geq x^2$
Cộng theo vế các BĐT trên ta thu được:
$2(xy+yz+xz)> x^2+y^2+z^2$

$\Leftrightarrow xy+yz+xz\geq \frac{x^2+y^2+z^2}{2}$ (đpcm)