Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác \(ADBC\) ta có :
\(IB=IA\left(g.t\right)\)
\(IC=IC\) ( \(D\) đối xứng qua \(I\))
Vì tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường
Vậy tứ giác \(ADBC\) là hình bình hành
b) Xét \(\Delta ABC\) ta có :
\(IA=IB\left(g.t\right)\)
\(MB=MC\left(g.t\right)\)
\(\Rightarrow IM\) là đường trung bình \(\Delta ABC\)
Do đó : \(IM\text{/ / }AC\)
Mà \(AB\text{⊥}AC\left(A=90^o\right)\)
Vậy \(IM\text{⊥}AB\)
Áp dụng định lí pytago \(\Delta ABC\) ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
\(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.13.5=30\left(cm^2\right)\)
hình bạn tự vẽ nhé
a) Xét tứ giác ADBC có AB giao DC tại I là trung điểm của mỗi đường
\(\Rightarrow ADBC\)là hình bình hành (dhnb)
b) Xét tam giác ABC có:
I là trung điểm của AB (gt) , M là trung điểm của BC(gt)
\(\Rightarrow IM\)là đường trung bình tam giác ABC
\(\Rightarrow IM//AC\left(tc\right)\)
Mà \(AB\perp AC\)
\(\Rightarrow IM\perp AB\)( từ vuông góc đến song song )
c) Áp dụng định lý Py-ta-go vào tam giác ABC ta được:
\(AB^2+AC^2=BC^2\)
\(AB^2+5^2=13^2\)
\(AB^2=144\)
\(\Rightarrow AB=12\left(cm\right)\)
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.12.5=30\left(cm^2\right)\)
Vậy ...
[Tự vẽ hình nha]
a. Ta có: D đối xứng với C qua K (gt)
=> DK = KC
=> K là trung điểm của DC
Xét tứ giác ADBC, có:
K là trung điểm của DC (cmt)
K là trung điểm của BA (gt)
=> ADBC là hình bình hành (dhnb)
a: Xét tứ giác ADBC có
I là trung điểm chung của AB và DC
nên ADBC là hình bình hành
b: \(S_{ABC}=\dfrac{1}{2}\cdot5\cdot12=30\left(cm^2\right)\)