K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2022

undefined

17 tháng 3 2022

cảm ơn bạn

 

16 tháng 3 2022

tham khảo

a: Xét ΔAMB và ΔAMC có

AB=AC

ˆBAM=ˆCAMBAM^=CAM^

AM chug

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ˆEAM=ˆFAMEAM^=FAM^

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A

c: Ta có: ΔAEM=ΔAFM

nên ME=MF

mà AE=AF

nên AM là đường trung trực của EF

hay AM⊥EF

16 tháng 3 2022

a: Xét ΔAMB và ΔAMC có

AB=AC

ˆBAM=ˆCAMBAM^=CAM^

AM chug

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ˆEAM=ˆFAMEAM^=FAM^

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A

c: Ta có: ΔAEM=ΔAFM

nên ME=MF

mà AE=AF

nên AM là đường trung trực của EF

hay AM⊥EF

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với 

31 tháng 1 2022

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))

\(\widehat{BAM}=\widehat{CAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)

b) Xét \(\Delta AEM\left(\widehat{AEM}=90^o\right)\) và \(\Delta AFM\left(\widehat{AFM}=90^o\right)\) có:

\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta AEM=\Delta AFM\left(ch.gn\right)\)

\(\Rightarrow AE=AF\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta AEF\) cân tại \(A\)

c) Xét \(\Delta AEF\) cân tại \(A\) có \(AM\) là đường phân giác \(\widehat{A}\)

\(\Rightarrow AM\) cũng là đường trung trực \(\Delta AEF\)

\(\Rightarrow AM\perp EF\)

31 tháng 1 2022

Tự vẽ hình

a, Tam giác AMB và tam giác AMC

AB = AC ( Tam giáC ABc cân )'

góc BAM = góc CAM ( AM là phân giác)

AM chung 

=> Tam giác AMB = tam giác AMC ( c-g-c)

b, Xét tam giá AEM và tam giác AFM cs

góc AEM = góc AFM = 90 độ ( gt )

góc EAM = góc FAM ( AM là phân giác)

AM chung

=>tam giá AEM = tam giác AFM ( ch-gn)

=> AE = AF hay tam giác AEF cân tại A

c, Xét tam giác AEF cân tại A cs AM là tia phân giác đồng thời là đg cao

=> AM vuông góc vs EF

 

11 tháng 12 2018

26 tháng 2 2021

Giải:

a)Vì tam giác ABC cân tại A=> <ABC=<ACB và AB=AC (dấu "<" trước tên góc là kí hiệu của góc nha)

Xét tam giác AMB và tam giác AMC có:

+<MAC=<MAB(AM là phân giác của <BAC)

+AB=AC(cmt)

+AM chung

=>tam giác AMB=tam giác AMC(g.c.g)

b)Xét tam giác AEM và tam giác AFM có:

+AM chung

+<MAE=<MAP(AM là phân giác của <BAC)

+<AEM=<APM=90°(gt)

=>tam giác AEM=tam giác AFM (ch-gn)

=>AE=AF(2 cạnh tương ứng)

=>tam giác AFE là tam giác cân.

26 tháng 2 2021

A B C M E F

a,Xét ∆AMB và ∆AMC có :

AB = AC (giả thiết)

∠BAM = ∠CAM (giả thiết)

AM chung

=> ∆AMB = ∆AMC (c.g.c)

b, Xét 2 tam giác vuông AME và AMF có :

AM chung

∠EAM = ∠FAM (giả thiết)

=> ∆AME = ∆AMF (cạnh huyền - góc nhọn)

=> AE = AF (cặp cạnh tương ứng)

=> ∆AFE cân tại A

10 tháng 3 2022

người mới hả

1: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

2: 

a: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-50^0}{2}=65^0\)

b: BC=6cm nên BM=3cm

=>AB=AC=5cm

3: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó: ΔAEM=ΔAFM

Suy ra: AE=AF

hay ΔAEF cân tại A