Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2-6b^2=-ab
a^2+ab-6b^2=0
a^2+3ab-2ab-6b^2=0
a(a+3b)-2b(a+3b)=0
(a+3b)(a-2b)=0
suy ra a+3b=0 hoặc a-2b=0
ta có a>b>0 nên a+3b=0 sẽ ko xảy ra
suy ra a-2b=0 ,a=2b
thế vào đa thức M ta có M=2.2b.b/2.(2b)^2-3b^2
M=4b^2/5b^2=4/5
Từ \(a^2-6b^2=-ab\Rightarrow a^2-6b^2+ab=0\)
\(\Rightarrow a^2+3ab-2ab-6b^2=0\)
\(\Rightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\)
\(\Rightarrow\left(a+3b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)
- Xét \(a=-3b\) thay vào M ta có:
\(M=\frac{2\cdot3\left(-b\right)\cdot b}{2\left(-3b\right)^2-3b^2}=\frac{-6b^2}{15b^2}=-\frac{2}{5}\)
- Xét \(a=2b\) thay vào M ta có:
\(M=\frac{2\cdot2b\cdot b}{2\cdot\left(2b\right)^2-3b^2}=\frac{4b^2}{8b^2-3b^2}=\frac{4b^2}{5b^2}=\frac{4}{5}\)
\(B=14+2x-2x^2=-2\left(x^2-x-7\right)=-2\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\frac{29}{4}\right)=-2\left[\left(x-\frac{1}{2}\right)^2-\frac{29}{4}\right]=-2\left(x-\frac{1}{2}\right)^2+\frac{29}{2}\)Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)
nên \(-2\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)
dso đó \(-2\left(x-\frac{1}{2}\right)^2+\frac{29}{2}\le\frac{29}{2}\left(x\in R\right)\)
Vậy \(Max_B=\frac{29}{2}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
B lớn nhất khi -B nhỏ nhất
Ta có: -B=2x2-2x-14
=(x2-2.1/2.x+1/4)+(x2-2.1/2.x+1/4)-14-2.1/4
=(x-1/2)2 . 2 -29/2
Ta có: (x-1/2)>=0 với mọi x
=>(x-1/2).2-29/2>=-29/2 với mọi x
=>-B>=-29/2 với mọi x
=>B<=29/2 với mọi x
Vậy MaxB=29/2 khi x=1/2
Giải
a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)
<=>10(2m-1)+ 12(2m+1) =0
<=> 44m +2 =0
<=> m=-1/22
b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)
<=> 20 = 5(2m -1) + 4(2m+1)
<=> 20 = 18m - 1
<=> m=7/6
\(a^2-6b^2=-ab\Rightarrow\frac{a^2-6b^2}{ab}=-1\)
\(\Leftrightarrow\frac{a}{b}-\frac{6b}{a}=-1\)
dat m=\(\frac{a}{b}\)
\(\Leftrightarrow m-\frac{6}{m}=-1\Rightarrow m^2-6=m\)
\(\Leftrightarrow\left\{\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
vi m=\(\frac{a}{b}\)
nen \(\left\{\begin{matrix}\frac{a}{b}=2\\\frac{a}{b}=-3\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}a=2b\\a=-3b\left(loai\right)\end{matrix}\right.\)
thay a=2b vao M ta duoc ket qua la\(\frac{4}{5}\)