Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)
\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)
\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)
Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)
Cách làm dài bạn thông cảm mình nghĩ được có zậy thui ak :/
Ta có a, b là các số thực dương
Từ \(a+3b=ab\Leftrightarrow\frac{1}{b}+\frac{3}{a}=1\ge2\sqrt{\frac{3}{ab}}.\)(bất đẳng thức Cauchy cho 2 số không âm)
\(\Leftrightarrow\frac{12}{ab}\le1\Leftrightarrow ab\ge12\)\(\Leftrightarrow84ab-72ab\ge144\Leftrightarrow84ab\ge72\left(ab+2\right)\)
\(\Leftrightarrow\frac{12ab}{ab+2}\ge\frac{72}{7}\left(1\right)\)
Ta có \(P=\frac{a^2}{1+3b}+\frac{9b^2}{1+a}\ge2\sqrt{\frac{a^2}{1+3b}\frac{9b^2}{1+a}}=\frac{6ab}{\sqrt{\left(1+a\right)\left(1+3b\right)}}\)(Bất đẳng thức Cauchy)
\(\ge\frac{6ab}{\frac{1+a+1+3b}{2}}=\frac{12ab}{a+3b+2}=\frac{12ab}{ab+2}\)(Bất đẳng thức Cauchy ngược dấu )
Kết hợp với (1) ta được :
\(P\ge\frac{12ab}{ab+2}\ge\frac{72}{7}.\)
Vậy giá trị nhỏ nhất của \(P=\frac{72}{7}\Leftrightarrow\hept{\begin{cases}a=3b\\a+3b=ab\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=2\end{cases}.}}\)
Lời giải:
Ta có :\(\frac{a^2+9b^2}{a-3b}=\frac{a^2+9b^2-6ab+6ab}{a-3b}\)
\(=\frac{(a-3b)^2+6}{a-3b}\) (do $ab=1$)
\(=a-3b+\frac{6}{a-3b}\geq 2\sqrt{(a-3b).\frac{6}{a-3b}}=2\sqrt{6}\) (theo bđt Cauchy)
Do đó ta có đpcm
Bài tương tự bài dưới đây:
Câu hỏi của Nguyễn Đặng Việt Tuấn - Toán lớp 9 | Học trực tuyến
Ta chứng minh được:
\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\leq \frac{2}{3}+ab+bc+ac\)
\(\Rightarrow P\leq \frac{2}{3}+2019(ab+bc+ac)\)
Mà \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=\frac{1}{3}\)
\(\Rightarrow P\leq \frac{2021}{3}\) hay \(P_{\max}=\frac{2021}{3}\)
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
Theo bài ra, ta có:
x+y+z=3
\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cau-chy ngược dấu ta có:
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu '=' xảy ra <=> a=3;b=2;c=1
*Bài khá giống bạn kia :)
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
\(\Rightarrow x+y+z=3\)
BĐT cần chứng minh trở thành :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cô Si ngược dấu ta có :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\)