K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

Khó nhỉ :))

1 tháng 12 2018

không thấy e nha bạn

15 tháng 6 2020

@Akai Haruma

14 tháng 8 2019

Áp dụng bất đẳng thức Cô-si :

\(\frac{a}{b+c}+\frac{b+c}{4a}\ge2\sqrt{\frac{a\left(b+c\right)}{4a\left(b+c\right)}}=1\)

Tương tự với các phân thức còn lại, sau đó cộng theo vế ta được :

\(VT+\frac{b+c}{4a}+\frac{c+d}{4b}+\frac{d+e}{4c}+\frac{e+a}{4d}+\frac{a+b}{4e}\ge5\)

\(\Leftrightarrow VT\ge5-\frac{1}{4}\left(\frac{b+c}{a}+\frac{c+d}{b}+\frac{d+e}{c}+\frac{e+a}{d}+\frac{a+b}{e}\right)\)

\(=5-\frac{1}{4}\left(\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{d}{b}+\frac{d}{c}+\frac{e}{c}+\frac{e}{d}+\frac{a}{d}+\frac{a}{e}+\frac{b}{e}\right)\)

\(\ge5-\frac{1}{4}\cdot10\sqrt[10]{\frac{b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e\cdot a\cdot a\cdot b}{a\cdot a\cdot b\cdot b\cdot c\cdot c\cdot d\cdot d\cdot e\cdot e}}=5-\frac{1}{4}\cdot10=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=e=1\)

27 tháng 3 2023

a) Theo đề bài, ta có \(\widehat{DEC}=\widehat{DFC}=90^o\) \(\Rightarrow\) Tứ giác CDEF nội tiếp do có 2 đỉnh kề nhau E, F cùng nhìn cạnh CD dưới góc vuông. \(\Rightarrow\widehat{DFE}=\widehat{DCE}=\widehat{DCB}=\widehat{DAB}\) (do tứ giác ABDC nội tiếp nên \(\widehat{DCB}=\widehat{DAB}\)). Từ đó suy ra đpcm.

b) Có \(\widehat{KBD}=\widehat{ACD}\) (do tứ giác ABDC nội tiếp) và \(\widehat{ACD}=\widehat{KED}\) (do tứ giác CDEF nội tiếp) \(\Rightarrow\widehat{KBD}=\widehat{KED}\) \(\Rightarrow\) Tứ giác DKBE nội tiếp. 

Mặt khác, \(\widehat{BDA}=\widehat{BCA}=\widehat{EDF}\) và \(\widehat{BAD}=\widehat{BCD}=\widehat{EFD}\)

\(\Rightarrow\Delta DBA~\Delta DEF\left(g.g\right)\)\(\Rightarrow\dfrac{DA}{DF}=\dfrac{DB}{DE}\) \(\Rightarrow DA.DE=DB.DF\)

c) \(\Delta DBA~\Delta DEF\Rightarrow\dfrac{DB}{DE}=\dfrac{AB}{EF}=\dfrac{2BI}{2EJ}=\dfrac{BI}{EJ}\) . Lại có \(\widehat{DBI}=\widehat{DEJ}\) nên \(\Delta DBI~\Delta DEJ\left(c.g.c\right)\) \(\Rightarrow\widehat{DIB}=\widehat{DJE}\) hay \(\widehat{DIK}=\widehat{DJK}\) \(\Rightarrow\) Tứ giác DJIK nội tiếp \(\Rightarrow\) \(\widehat{DJI}=180^o-\widehat{DKI}\) . Lại có \(\widehat{DKI}=180^o-\widehat{BED}=90^o\) (do tứ giác DKBE nội tiếp) \(\Rightarrow\widehat{DJI}=90^o\) \(\Rightarrow\) đpcm

18 tháng 5 2021

a) Tự làm nhá 

b) +) CM \(\Delta ADC~\Delta HDE\left(g-g\right)\)

=> DA.HE=DH.AC

+) \(\Delta BAD\)cân\(=>\widehat{BAD}=90^0-\frac{1}{2}\widehat{B}=\widehat{CAD}\)

mà \(\widehat{CAD}=\widehat{B}\)

=> AD là tia phân giác góc HAC => Góc HAE = góc CAE => cung HE= cung CE => cạnh HE = cạnh CE => tam giác cân (dpcm)

18 tháng 5 2021

3) Xét \(\Delta MNP\)zuông tại M ngoại tiếp đươg tròn tâm I , bán kính r , tiếp xúc các cạnhMN  , MP,NP thứ tự tại D, E ,F

ta có \(\widehat{IEM}=\widehat{IDM}=\widehat{DME}=90\);ID =IE=r

=> tứ giác IEMD là hình zuông

=> MD=ME=r

Có ND=NF,PE =PF( các tia tiếp tuyến cắt nhau)

=> MN+MP-NP=MD+ND+ME+PE-NF-PF=MD+ME=2r

tam giác ABH zuông tại H có \(\hept{\begin{cases}R_1=\frac{AH+BH-AB}{2}\\\end{cases}}\)

Tam giác ACH zuông tại H có \(R_2=\frac{AH+CH-AC}{2}\)

tam giác ABC zuông tại A có \(R_3=\frac{AB+AC-BC}{2}\)

\(=>R_1+R_2+R_3=AH\)

ta có \(AH\le AO=\frac{6}{2}=3cm\)

dấu = xảy ra khi H trung O

=> A là điểm chính giữa cung BC 

Nguồn : https://qanda.ai/vi/solutions/npWTTopujG-Cho-n%E1%BB%ADa-%C4%91%C6%B0ong-tr%C3%B2n-t%C3%A2m-O-d%C6%B0%E1%BB%9Dng-k%C3%ADnh-BC6cm-Tr%C3%AAn-n%E1%BB%ADa-%C4%91%C6%B0%E1%BB%9Dng-tr%C3%B2n

2 tháng 3 2020

Căn là để làm màu,khử căn bằng cách bình phương

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c};\sqrt{d};\sqrt{e}\right)\rightarrow\left(x;y;z;t;v\right)\)

Khi đó ta cần chứng minh:

\(x^2+y^2+z^2+t^2+v^2\ge x\left(y+z+t+v\right)\)

\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2+4v^2-4xy-4xz-4xt-4xv\ge0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(x^2-4xz+4z^2\right)+\left(x^2-4xt+4t^2\right)+\left(x^2-4xv+4v^2\right)\ge0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(x-2z\right)^2+\left(x-2t\right)^2+\left(x-2v\right)^2\ge0\)

Dấu "=" xảy ra tại x=2y=2z=2t=2v

28 tháng 7 2020

làm xong ấn hủy :(( chán 

\(bđt\Leftrightarrow2a^2+2b^2+2c^2+2d^2+2e^2-2ab-2ac-2ad-2ae\ge0\)

\(\Leftrightarrow a^2-2a\left(d+e\right)+\left(d+e\right)^2+b^2-2bc+c^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+d^2-2de+e^2\ge0\)

\(\Leftrightarrow\left(a-d-e\right)^2+\left(b-c\right)^2+\left(a-b-c\right)^2+\left(d-e\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

28 tháng 7 2020

cách khác câu a)

ta xét P=a2-a(b+c+d+e)+b2+c2+d2+e2 là một tam thức bậc 2 theo biến a ta có \(\Delta=\left(b+d+c+e\right)^2-4\left(b^2+d^2+c^2+e^2\right)\)

theo bđt cauchy-schwarz ta có \(\left(1+1+1+1\right)\left(b^2+c^2+d^2+e^2\right)\ge\left(b+d+c+e\right)^2\)

do đó \(\Delta\le0\), theo định lí về dấu của tam thức bậc hai ta được

a2-a(b+c+d+e) +b2+c2+d2+e2>=0

bài toán được chứng minh