Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a^{2014}+b^{2015}+c^{2016}\right)-\left(a^{2012}+b^{2013}+c^{2014}\right)\)
\(=a^{2012}\left(a+1\right)\left(a-1\right)+b^{2013}\left(b+1\right)\left(b-1\right)+c^{2014}\left(c+1\right)\left(c-1\right)⋮6\)
Mà \(\left(a^{2014}+b^{2015}+c^{2016}\right)⋮6\)
\(\Rightarrow\left(a^{2012}+b^{2013}+c^{2014}\right)⋮6\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của miumiucute - Toán lớp 9 | Học trực tuyến
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\)
=> \(2014^2+1=2015^2-2.2014\)
=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\)
= \(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\)
=> đpcm
a,a=b+1
suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1
suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)
vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)
suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)
từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)
ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)
suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)
vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)
suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)
Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)
từ (*),(**) suy ra đccm
Ta thành lập một biểu thức có dạng như sau:
\(\left(a^{2015}+b^{2015}\right)\left(a+b\right)-\left(a^{2014}+b^{2014}\right)ab=a^{2016}+b^{2016}\) \(\left(1\right)\)
Mà \(a^{2014}+b^{2014}=a^{2015}+b^{2015}=a^{2016}+b^{2016}\) (theo gt)
nên từ \(\left(1\right)\) suy ra \(\left(a^{2016}+b^{2016}\right)\left(a+b\right)-\left(a^{2016}+b^{2016}\right)ab=a^{2016}+b^{2016}\)
\(\Leftrightarrow\) \(\left(a^{2016}+b^{2016}\right)\left(a+b-ab\right)=a^{2016}+b^{2016}\)
\(\Leftrightarrow\) \(a+b-ab=1\) (do \(a^{2016}+b^{2016}\ne0\))
\(\Leftrightarrow\) \(\left(1-a\right)\left(b-1\right)=0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}1-a=0\\b-1=0\end{cases}}\) \(\Leftrightarrow\) \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)
Với \(a=1\) thì ta dễ dàng suy ra \(b=1\)
Tương tự với \(b=1\)
Vậy, \(\left(x,y\right)=\left(1,1\right)\)
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3
đây là hướng giải thôi nhé